5000th patient treated with protons for eye tumours

From the patient's perspective at the treatment station: The proton beam is directed through the hole in the shield onto the tumour in the eye. The brass shield is adjusted to the individual tumour size and protects the surrounding tissue.

From the patient's perspective at the treatment station: The proton beam is directed through the hole in the shield onto the tumour in the eye. The brass shield is adjusted to the individual tumour size and protects the surrounding tissue. © HZB/. S. Kodalle

The treatment centre for eye tumour therapy in Berlin-Wannsee

The treatment centre for eye tumour therapy in Berlin-Wannsee © HZB/ S. Kodalle

For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.

The treatment room and proton accelerator are specially adapted to the requirements for optimal and highly precise treatment of tumours inside the eye and are unique in this combination. The largest group of tumours in the eye is the rare and malignant uveal melanoma, which, as the name suggests, develops in the uvea of the eye.

Proton therapy is used as an effective method of fighting tumours, often as an alternative to removing the eye, with the aim of preserving the eye and its function as much as possible. The protons can be directed very precisely at the tumour, sparing the surrounding healthy tissue. Compared to other radiation methods, proton therapy causes less damage to the cornea, lens, retina and optic nerve in many cases.

8 August 2025 was a special day: it was the day on which the 5000th patient completed their eye tumour treatment. This makes the Berlin experts one of the world's leading centres: together, the two institutions (Charité and HZB) have treated 10 percent of all eye tumours treated with protons worldwide. The cooperation with Charité – Universitätsmedizin Berlin also opens up prospects for the further development of proton therapy in order to carry out even more precise and effective treatments in the future – for the benefit of patients.

(sz)

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.