Metallic nanocatalysts: what really happens during catalysis

This image taken with a scanning electron microscope shows rhodium-coated platinum nanoparticles on a conductive substrate. The crystalline facets are clearly visible in the polyhedral shape of the nanoparticles.

This image taken with a scanning electron microscope shows rhodium-coated platinum nanoparticles on a conductive substrate. The crystalline facets are clearly visible in the polyhedral shape of the nanoparticles. © Arno Jeromin, DESY NanoLab

This image illustrates the oxidation of the nanoparticles on the strontium titanate substrate: while the metallic rhodium (green) mixes with the platinum (blue) in the core of the nanoparticle (violet) and oxidises on the outside (brown), the small rhodium nanoparticles grow together on the substrate and oxidise more strongly.

This image illustrates the oxidation of the nanoparticles on the strontium titanate substrate: while the metallic rhodium (green) mixes with the platinum (blue) in the core of the nanoparticle (violet) and oxidises on the outside (brown), the small rhodium nanoparticles grow together on the substrate and oxidise more strongly. © Jagrati Dwivedi, DESY NanoLab

Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.

Nanoparticles measure less than one ten-thousandth of a millimetre in diameter and have enormous surface areas in relation to their mass. This makes them attractive as catalysts: metallic nanoparticles can facilitate chemical conversions, whether for environmental protection, industrial synthesis or the production of (sustainable) fuels from CO2 and hydrogen.

Platinum core with Rhodium shell

Platinum (Pt) is one of the best-known metal catalysts and is used in heterogeneous gas phase catalysis for emission control, for example to convert toxic carbon monoxide in car exhaust gases from combustion engines into non-toxic CO2. ‘Mixing platinum particles with the element rhodium (Rh) can further increase efficiency,’ says Jagrati Dwivedi, first author of the publication. The location of the two elements plays an important role in this process. So-called core-shell nanoparticles with a platinum core and an extremely thin rhodium shell can help in the search for the optimal element distribution that can extend the lifetime of the nanoparticles.

Experiments at BESSY II and DESY NanoLab

Until now, however, little was known about how the chemical composition of a catalyst's surface changes during operation. A team led by Dr Thomas F. Keller, head of the microscopy group at DESY NanoLab, has now investigated such crystalline Pt-Rh nanoparticles at BESSY II and gained new insights into the changes at the facets of the polyhedral nanoparticles.

The nanoparticles were first characterised and marked in their vicinity using scanning electron microscopy and atomic force microscopy at DESY NanoLab. These markers were then used to analyse the same nanoparticles spectroscopically and image them microscopically simultaneously using X-ray light on a special instrument at BESSY II.

The SMART instrument at the Fritz Haber Institute of the Max Planck Society enables X-ray photoemission electron microscopy (XPEEM) in a microscope mode. This makes it possible to distinguish individual elements with high spatial resolution, enabling the observation of chemical processes at near-surface atomic layers. ‘The instrument allows the chemical analysis of individual elements with a resolution of 5-10 nanometres, which is unique,’ says Thomas Keller. The investigation has shown that rhodium can partially diffuse into the platinum cores during catalysis: both elements are miscible at the typical operating temperatures of the catalyst. The mixing is enhanced in a reducing environment (H2) and slowed down in an oxidising environment (O2) without reversing the net flow of rhodium into platinum. ‘At higher temperatures, this process even increases significantly,’ explains Keller.

Different reaction rates

The reaction rates also depend on the orientation of the nanoparticles' facets. ‘They are particularly high on certain facets,’ emphasises Jagrati Dwivedi: ‘Our facet-resolved study shows that rhodium oxidation is highest on facets with many atomic steps, where the atoms are most easily bound.’ This detailed analysis of the oxidation behaviour will contribute to the further optimisation of such nanocatalysts, which can undergo irreversible changes during use.

arö

  • Copy link

You might also be interested in

  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.
  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.