Poröse organische Struktur verbessert Lithium-Schwefel-Batterien

In den Poren dieses radikalen organischen Gerüsts sind Polysulfide fest eingeschlossen. So wird verhindert, dass sie zurück in die Batterie gelangen und deren Lebensdauer verkürzen.

In den Poren dieses radikalen organischen Gerüsts sind Polysulfide fest eingeschlossen. So wird verhindert, dass sie zurück in die Batterie gelangen und deren Lebensdauer verkürzen. © Sijia Cao / HZB

Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.

Kristalline Gerüststrukturen aus organischen Polymeren (covalent organic frameworks, COF) sind eine interessante Materialklasse. Sie zeichnen sich durch ihre hohe Porosität aus, vergleichbar mit einem Schwamm, allerdings sind in diesem Fall die Poren höchstens wenige Mikrometer groß. Manche dieser COF-Materialien besitzen besondere Eigenschaften, die sich für Anwendungen in elektrochemischen Energiespeichern anbieten, zum Beispiel eignen sich bestimmte Strukturen als „Wirte“ für Schwefelverbindungen wie Polysulfide in den Elektroden von Lithium-Schwefel-Batterien. Die Idee ist, dass sich die Polysulfide an die Innenflächen der Poren binden und dort wieder elementaren Schwefel erzeugen. Bislang hat dies jedoch noch nicht richtig funktioniert.

Neu entwickelt: Ein COF mit Radikalen

Ein Team um Prof. Yan Lu (HZB) und Prof. Arne Thomas (Technische Universität Berlin) hat nun mit einem neu entwickelten COF-Material einen großen Fortschritt erzielt. Durch die Einbindung bestimmter Radikale gelang es dem Team, die gewünschte Reaktion in den Poren katalytisch zu beschleunigen.

Das Material besteht aus Tetrathiafulvalen-Einheiten ([TTF]2•+) und Trisulfid-Radikal-Anionen (S3•-), die über Benzothiazol (R-TTF•+-COF) miteinander verbunden sind. Dies erhöht sowohl die katalytische Aktivität als auch die elektrische Leitfähigkeit des COF. „Ungepaarte Elektronen spielen in den Mikro-/Mesoporen von COFs eine wichtige Rolle”, erklärt Yan Lu: „Sie tragen zu delokalisierten π-Orbitalen bei, was den Ladungstransfer zwischen den Schichten erleichtert und somit die katalytischen Eigenschaften verbessert.”

Komplexe Untersuchung von allen Seiten

In einer sehr komplexen und aufwändigen Studie hat das Team die zentrale Rolle von Radikalmotiven bei der Katalyse der Schwefelreduktionsreaktionen aufgeklärt. Dafür untersuchten sie die COF-Materialien in Li-S-Batteriezellen mit Festkörper-Kernspinresonanzspektroskopie (ssNMR) und Elektronenspinresonanzspektroskopie (EPR). Außerdem arbeiteten sie mit In-situ-Röntgentomographie an der BAMline bei BESSY II, um die Poren im Inneren genauer zu charakterisieren. Sie kombinierten diese experimentellen Ergebnisse mit theoretischen Berechnungen, um die Ergebnisse zu interpretieren. „Dadurch konnten wir zeigen, dass die Radikalkationen [TTF]2•+ als katalytische Zentren fungieren, die LiPS binden und die Verlängerung und Spaltung der S−S-Bindungen erleichtern“, sagt Sijia Cao, die im Team von Yan Lu ihre Doktorarbeit macht.

Signifikante Steigerung der Lebensdauer

Das Ergebnis ist erstaunlich: Die Leistung der Li-S-Batterie verbessert sich durch den Einsatz des neuen R-TTF•+-COF-Materials deutlich. Die Lebensdauer von Li-S-Batterien erhöht sich somit auf über 1.500 Zyklen mit einem Kapazitätsverlust von nur 0,027 % pro Zyklus. Diese Haltbarkeit von Li-S-Batterien wurde mit COF-Materialien oder anderen rein organischen Katalysatoren bisher noch nicht erreicht. In der Regel besitzen Li-S-Batterien laut Berichten aus den letzten Jahren eine Lebensdauer von weniger als 1.000 Zyklen.

„Die Integration solcher Radikalgerüststrukturen in Lithium-Schwefel-Batterien ist sehr vielversprechend“, sagt Yan Lu. Darüber hinaus bieten diese Materialien eine Vielzahl von Möglichkeiten zur weiteren Optimierung. Die elektronischen Eigenschaften des Gerüsts und die katalytische Aktivität ändern sich je nachdem, welche Moleküle als Radikale verwendet werden. Die Forschung zu COFs mit stabilen Radikalbausteinen, die speziell auf die Katalyse von Schwefelreduktionsreaktionen zugeschnitten sind, wird daher sicher weiter ein fruchtbares Arbeitsgebiet bleiben.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.