HZB Newsroom
- "BESSY is of immense importance for Berlin"At the end of August, the Senator for Research, Health, and Long-Term Care, Dr Ina Czyborra, together with the State Secretary for Science, Dr Henry Marx, ended her summer tour with a visit to HZB in Adlershof. She publicly declared her political support for the new construction of BESSY III.
- The future of BESSYAt the end of February 2024, a team at HZB published an article in Synchrotron Radiation News (SRN). They describe the next development goals for the light source as well as the BESSY II+ upgrade programme and the successor source BESSY III.
- TU Berlin appoints Renske van der Veen as professorFor the past two years, Dr Renske van der Veen has led a research group in time-resolved X-ray spectroscopy and electron microscopy at HZB. Her research focuses on catalytic processes that enable, for example, the production of green hydrogen. She has now been appointed to a S-W2 professorship at the Institute of Optics and Atomic Physics (IOAP) at the Technische Universität Berlin.
- HZB physicist appointed to Gangneung-Wonju National University, South KoreaSince 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
- New software based on Artificial Intelligence helps to interpret complex dataExperimental data is often not only highly dimensional, but also noisy and full of artefacts. This makes it difficult to interpret the data. Now a team at HZB has designed software that uses self-learning neural networks to compress the data in a smart way and reconstruct a low-noise version in the next step. This enables to recognise correlations that would otherwise not be discernible. The software has now been successfully used in photon diagnostics at the FLASH free electron laser at DESY. But it is suitable for very different applications in science.
- LEAPS research infrastructures to tackle societal crisesAgainst a backdrop of the energy crisis, scientists and policymakers convened at Paul Scherrer Institute PSI in Switzerland and set out a vision for European accelerator based photon sources to address current and future societal challenges together.
- A high-ranking Brazilian delegation visited HZBOn 16 May 2022, HZB received a delegation from the Brazilian Ministry of Science, Technology and Innovation (MCTI). Vice-Minister of Science Sergio Freitas de Almeida was visibly impressed by the many research activities being done at HZB to drive the transition to a climate-neutral energy supply in society forward.
- Light for cutting-edge research from Germany: an exchange with German MPsOn 13 May, three research centres of the Helmholtz Association - DESY, HZDR and HZB - presented their joint strategy for accelerator-based light sources to German MPs.
- Jan Lüning heads HZB Institute for Electronic Structure DynamicsThe HZB Institute for Electronic Structure Dynamics, newly founded on 1 May, develops experimental techniques and infrastructures to investigate the dynamics of elementary microscopic processes in novel material systems. This will help to optimise functional materials for sustainable technologies.
- SNI2022 – Abstract submission extended to 1 May 2022The 5th Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities takes place form 5 - 7 September 2022 in Berlin. In response to a great demand the deadline for the abstract submission to the SNI2022 conference has been extended to 1 May. Take this opportunity and submit your abstract by Sunday!
- Life Time Achievement Award for Roland MüllerAccelerator and control systems expert Roland Müller received the ICALEPCS Lifetime Achievement Award. In the more than thirty years of his career at BESSY, the physicist has advanced many projects on control systems at accelerators and has been particularly committed to the international exchange of knowledge.
- Precision measurements lead to breakthroughs: HZB is planning the construction of a new accelerator-based light sourceFor the 200th birthday of Hermann von Helmholtz, Helmholtz-Zentrum Berlin (HZB) is celebrating by hosting a festive event in Berlin-Adlershof. The polymath Helmholtz still inspires researchers to this day, now notably in the planning of an accelerator-based light source of the latest generation, which HZB is presenting at the event. It will generate light of special quality for research. Governing Mayor Michael Müller has stressed the importance of a new light source for the research location Berlin.
- When vibrations increase on cooling: Anti-freezing observedAn international team has observed an amazing phenomenon in a nickel oxide material during cooling: Instead of freezing, certain fluctuations actually increase as the temperature drops. Nickel oxide is a model system that is structurally similar to high-temperature superconductors. The experiment shows once again that the behaviour of this class of materials still holds surprises.
- Synchrotrons accelerate corona researchInformation by the German Committee Research with Synchrotron Radiation (KFS).
Synchrotron light sources were originally built to study particles. Today, they are even used in the fight against COVID-19. The projects are as diverse as the fields of the synchrotron users, who come from universities, research institutions and companies like BioNTech. - Tailwind for top research in Germany
Three research centres in the Helmholtz Association have developed a joint future plan for the research conducted at the scientific light sources they operate in Hamburg, Berlin and Dresden. The upgrades proposed in the strategy for their world-class accelerator-based facilities will strengthen Germany as a research location and promote innovations in many different fields. The strategy paper was presented on 28 June at the Helmholtz Symposium “Research Infrastructures of the Future” as a component of the Helmholtz Roadmap.
- Renske van der Veen heads new department "Atomic Dynamics in Light-Energy Conversion"From June 2021, Dr. Renske van der Veen is setting up a new research group at HZB. The chemist is an expert in time-resolved X-ray spectroscopy and electron microscopy and studies catalytic processes that enable the conversion of solar energy into chemical energy.
- Accelerator Physics: HF-Couplers for bERLinPro prove resilientIn synchrotron light sources, an electron accelerator brings electron bunches to almost the speed of light so that they can emit the special "synchrotron light". The electron bunches get their enormous energy and their special shape from a standing electromagnetic alternating field in so-called cavities. With high electron currents, as required in the bERLinPro project, the power needed for the stable excitation of this high-frequency alternating field is enormous. The coupling of this high power is achieved with special antennas, so-called couplers, and is considered a great scientific and technical challenge. Now, a first measurement campaign with optimised couplers at bERLinPro shows that the goal can be achieved.
- New Materials for Energy Storage: ERC Starting Grant for Tristan PetitDr. Tristan Petit has received a prestigious Starting Grant from the European Research Council for 1.5 million euros over the next five years. The materials researcher will use the grant to investigate a new class of materials known as MXenes for storing electrical energy. MXenes can store and deliver large amounts of electrical energy extremely quickly. They might play an important role in energy storage alongside batteries and supercapacitors. The ERC Starting Grant is one of the most important European research grants.
- BESSY II: Ultra-fast switching of helicity of circularly polarized light pulsesAt the BESSY II storage ring, a joint team of accelerator physicists, undulator experts and experimenters has shown how the helicity of circularly polarized synchrotron radiation can be switched faster - up to a million times faster than before. They used an elliptical double-undulator developed at HZB and operated the storage ring in the so-called two-orbit mode. This is a special mode of operation that was only recently developed at BESSY II and provides the basis for fast switching. The ultra-fast change of light helicity is particularly interesting to observe processes in magnetic materials and has long been expected by a large user community.