Jay, Raphael: Principles of charge distribution and separation: The case of iron complexes probed by X-ray spectroscopy. , 2020
Universität Potsdam

The electronic charge distributions of transition metal complexes fundamentally determine their chemical reactivity. Experimental access to the local valence electronic structure is therefore crucial in order to determine how frontier orbitals are delocalized between different atomic sites and electronic charge is spread throughout the transition metal complex. To that end, X-ray spectroscopies are employed in this thesis to study a series of solution-phase iron complexes with respect to the response of their local electronic charge distributions to different external influences. Using resonant inelastic X-ray scattering (RIXS) and X-ray absorption spectroscopy (XAS) at the iron L-edge, changes in local charge densities are investigated at the iron center depending on different ligand cages as well as solvent environments. A varying degree of charge delocalization from the metal center onto the ligands is observed, which is governed by the capabilities of the ligands to accept charge density into their unoccupied orbitals. Specific solvents are furthermore shown to amplify this process. Solvent molecules of strong Lewis-acids withdraw charge from the ligand allowing in turn for more metal charge to be delocalized onto the ligand. The resulting local charge deficiencies at the metal center are, however, counteracted by competing electron-donation channels from the ligand towards the iron, which are additionally revealed. This is interpreted as a compensating effect which strives to maintain local charge densities at the iron center. This mechanism of charge density preservation is found to be of general nature. Using time-resolved RIXS and XAS at the iron L-edge, an analogous interplay of electron donation and back-donation channels is also revealed for the case of charge-transfer excited states. In such transient configurations, the electronic occupation of iron-centered frontier orbitals has been altered by an optical excitation. Changes in local charge densities that are expected to follow an increased or decreased population of iron-centered orbitals are, however, again counteracted. By scaling the degree of electron donation from the ligand onto the metal, local charge densities at the iron center can be efficiently maintained. Since charge-transfer excitations, however, often constitute the initial step in many electron transfer processes, these findings challenge common notions of charge-separation in transition metal dyes.