• Torres Merino, L.V.; Petoukhoff, C.E.; Matiash, O.; Subbiah, A.S.; Franco, C.V.; Dally, P.; Vishal, B.; Kosar, S.; Rosas Villalva, D.; Hnapovskyi, V.; Ugur, E.; Shah, S.; Peña Camargo, F.; Karalis, O.; Hempel, H.; Levine, I.; Pradhan, R.R.; Kralj, S.; Kalasariya, N.; Babics, M.; Yildirim, B.K.; Said, A.A.; Aydin, E.; Bristow, H.; Mannar, S.; Raja, W.; Pininti, A.R.; Prasetio, A.; Razzaq, A.; Al Nasser, H.; Allen, T.G.; Isikgor, F.H.; Baran, D.; Anthopoulos, T.D.; Masis, M.M.; Schwingenschlögl, U.; Unold, T.; Stolterfoht, M.; Laquai, F.; De Wolf, S.: Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells. Joule 8 (2024), p. 2585-2606

10.1016/j.joule.2024.06.017

Abstract:
Halide segregation in wide band-gap halide perovskites is an important bottleneck toward long operational lifetimes of perovskite-based multijunction solar cells. To minimize this phenomenon, aside from other well-known strategies such as perovskite defect passivation, enhancing the charge carrier collection needs to be effectively addressed. Here, we report a universal method to improve the hole collection in p-i-n perovskite solar cells (PSCs) by engineering the energetic alignment between the perovskite and the hole-selective contact through blended SAMs, MeO-2PACz with Br-2PACz. With the presented correlation between carrier collection and halide segregation analysis in this study, we show that it is possible to predict which interface is less prone to promote halide segregation, and thus it can be used to accelerate the development of PSCs with increased photostability. By studying different perovskite compositions, we highlight the universality of our method.