Akaike, K.; Koch, N.; Oehzelt, M.: Fermi level pinning induced electrostatic fields and band bending at organic heterojunctions. Applied Physics Letters 105 (2014), p. 223303/1-4
10.1063/1.4903360
Open Accesn Version

Abstract:
The energy level alignment at interfaces between organic semiconductors is of direct relevance to understand charge carrier generation and recombination in organic electronic devices. Commonly, work function changes observed upon interface formation are interpreted as interface dipoles. In this study, using ultraviolet and X-ray photoelectron spectroscopy, complemented by electrostatic calculations, we find a huge work function decrease of up to 1.4 eV at the C60 (bottom layer)/zinc phthalocyanine (ZnPc, top layer) interface prepared on a molybdenum trioxide (MoO3) substrate. However, detailed measurements of the energy level shifts and electrostatic calculations reveal that no interface dipole occurs. Instead, upon ZnPc deposition, a linear electrostatic potential gradient is generated across the C60 layer due to Fermi level pinning of ZnPc on the high work function C60/MoO3 substrate, and associated band-bending within the ZnPc layer. This finding is generally of importance for understanding organic heterojunctions when Fermi level pinning is involved, as induced electrostatic fields alter the energy level alignment significantly.