Sauerstoff: Sprunghaftes Verhalten

Dr. Justine Schlappa

Dr. Justine Schlappa

HZB an Forschungen zur Quantenschwebung beteiligt, die das Verständnis vom Entstehen und Brechen chemischer Bindungen erweitert.

Das Brechen der Bindung zwischen zwei Atomen ist ein elementarer Schritt in einer chemischen Reaktion. Dabei trennen sich die Atome bis sie keine Wechselwirkung mehr spüren. Kommt eins der Atome in die Nähe eines weiteren Atoms, kann es von diesem eingefangen werden, so dass eine neue chemische Bindung entsteht. Die bisherige Vorstellung von diesem Prozess: Die Bewegung der Atome verläuft stetig; beim Brechen einer Bindung vergrößert sich der Atomabstand kontinuierlich, beim Entstehen einer neuen Bindung verkleinert er sich ebenso kontinuierlich.

Ein internationales Team von Wissenschaftlerinnen und Wissenschaftlern hat unter Beteiligung von Professor Dr. Alexander Föhlisch und Dr. Justine Schlappa vom Institut „Methoden und Instrumentierung der Synchrotronstrahlung“ am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) gezeigt, dass diese Ansicht korrigiert werden muss: Brechen beispielsweise Sauerstoffmoleküle auseinander, bewegen sich die Atome nicht kontinuierlich auseinander.

Für diese Entdeckung beleuchteten die Wissenschaftler gasförmigen Sauerstoff mit so genanntem Synchrotronlicht. Das Licht führte zu einer Anregung der Sauerstoffmoleküle – die chemische Bindung zwischen den beiden Sauerstoffatomen des Moleküls bricht vorübergehend. Das von den Molekülen zurückgestreute Licht haben die Forscher gemessen und erhielten so Informationen über den Abstand der Sauerstoffatome zu einem bestimmten Zeitpunkt. Die Energie des eingestrahlten Lichts wählten die Experimentatoren so, dass der Zerfallsprozess auf zwei gleichwertige Arten ablaufen kann. Beide Wege unterscheiden sich nur darin, dass die sich trennenden Atome unterschiedliche Geschwindigkeiten aufweisen.

Die Messergebnisse zeigen, dass es für die tatsächlich gemessenen Abstände zwischen den Sauerstoffatomen nicht beliebige, sondern präferenzielle Werte gibt: Es gibt also Distanzen, wo sich die Sauerstoffatome häufig aufhalten. Zur Erklärung dieses Phänomens zieht die HZB-Wissenschaftlerin Dr. Justine Schlappa den Vergleich mit einer leicht verstimmten Gitarre heran: „Zupft ein Musiker auf den Saiten zwei Töne, deren Frequenzen etwas zueinander verschoben sind, hört er ein periodisches Lauter- und Leiserwerden. Akustiker nennen dieses An- und Abschwellen des Tones Schwebung. Sie verschwindet, wenn das Instrument sauber gestimmt ist und die Frequenzen der Töne exakt aufeinander abgestimmt sind.“

Ursache für die Schwebung ist der Wellencharakter des Schalls. „Wenn sich die Wellen zweier Töne leicht gegeneinander verschieben, kommt es zur Interferenz“, so Schlappa: „Gleichzeitig auftretende Wellenberge verstärken sich, und der Ton wirkt lauter. Treffen hingegen Wellentäler auf Wellenberge, löschen sie sich gegenseitig aus – der Ton wird leiser.“ Genauso wie den Schall betrachten die Physiker nun auch die sich trennenden Sauerstoffatome als Wellen. Justine Schlappa: „Die beiden möglichen Geschwindigkeiten, mit denen sich die Sauerstoffatome trennen, führen zu leicht verschobenen Frequenzen der Sauerstoff-Wellen und verursachen die so genannte Quantenschwebung.“ Auch hier verstärken sich Wellenberge und es kommt zu Stellen im Raum wo Atome vorzugsweise gefunden werden. Wellenberge und Wellentäler heben sich gegenseitig auf mit dem Resultat, dass es Orte gibt, an denen sich keine Atome aufhalten.

„Unsere Beobachtung hat gravierende Konsequenzen für das Verständnis chemischer Reaktionen“, sagt Professor Dr. Alexander Föhlisch, Leiter des HZB-Instituts „Methoden und Instrumentierung der Synchrotronstrahlung“: „Kann kein Atom nachgewiesen werden, können bei diesem Abstand keine weitere chemische Schritte stattfinden“, so Föhlisch weiter: „Dies ist eine gravierende Einschränkung für den Ablauf von chemischen Reaktionen und zwingt uns dazu, im Grundsatz unser Verständnis von chemischen Prozessen zu überdenken.“

A. Pietzsch et al., Spatial Quantum Beats in Vibrational Resonant Inelastic Soft X-ray Scattering at Dissociating States of Oxygen, Phas.; Rev. Lett. 153004 (2011). DOI: 10.1103/PhysRevLett.106.153004

Und:

Y-P Sun et al., Internal Symmetry and Selection Rules in Resonant Inelastic Soft X-ray Scattering", J. Phys. B: At. Mol. Opt. Phys. 44 161002 (2001).

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.