Keywords: accelerator physics (173) BESSY II (264)

News    07.12.2011

Breakthrough in X-Ray Nanospectroscopy

This picture schematically shows the studied titanium dioxide rods
illuminated by X-rays of various photon energies through a capillary
condenser. A high-resolution lens – not shown here – then forms
an image of the objects.
Source: HZB

HZB researchers achieve X-ray spectroscopy at nanoscale spatial resolution

Researchers at Helmholtz Zentrum Berlin (HZB) have developed a new microscope for high spatial resolution X-ray spectroscopic studies. While conventional X-ray spectroscopy has so far fallen short of resolving single nanoparticles, the X-ray microscope at HZB’s synchrotron source BESSY II succeeds by using high-brilliancy X-rays.

Indeed, one of the essential reasons for studying nanoparticles or nanostructures is to determine their individual sizes and electronic properties. To attain the necessary spatial resolution, down to the nanoscale, the structures have to be illuminated with X-rays at high spectral resolution and imaged onto a detector using an X-ray lens. Dr. Peter Guttmann and the microscopy team of PD Dr. Gerd Schneider at the HZB Institute for Soft Matter and Functional Materials have published the new method in Nature Photonics:

  • Flash: http://content.yudu.com/A1vo3s/Nanotimes01-2012/
  • Plain text version live at: http://content.yudu.com/A1vo3s/Nanotimes01-2012/resources/plainText.htm
  • PDF (97 pages, 16Mb): http://www.nano-times.com/files/nanotimes_12_01.pdf

There is great interest in the electronic properties of nanostructures, which can be functionalized in all kinds of ways, for example as active materials with a large surface area and small volume. Conceivable uses are in lithium-ion batteries, for example, or in photocatalysis to produce hydrogen as an energy carrier, or in solar cells. The HZB microscope is a new and attractive tool for materials sciences, and for energy research in particular.

This method can take pictures of nanoparticles inside object fields of up to 20 x 20 µm2 simultaneously with a CCD camera. An object field of this size holds many structures of interest. By recording image data in very small energy steps over a select energy range, the researchers obtain records of high-spatial-resolution images with spectral information. This provides a spectrum of each individual particle or portion of the nanostructure. These NEXAFS spectra, as they are called, reveal information about the electronic structure and ultimately the arrangement of the individual atoms within the nanoparticle. Unlike scanning X-ray microscopy, which measures sequentially the spectra of single nanoparticles with each picture, an image stack from the new method already contains the spectra of a large number of particles, meaning it already has statistical significance.

“An important advantage of our microscope is the time gain on top of the improved spectral resolution of 10,000,” says Dr. Peter Guttmann, physicist at HZB. “Unlike the scanning X-ray microscopes used so far for this, our microscope allow spectra to be recorded 100 times faster inside large object fields. We can use the HZB electron beam writer to produce advanced lenses that will improve our method from the current 25 nm to a spatial resolution of 10 nm.”

At the high spatial and spectral resolution of the microscope, the researchers cooperated with co-authors from Belgium, France and Slovenia to study the structure of specially built titanium dioxide nanorods. The nanorod studies they now present were done as a European cooperative as part of the COST action MP0901(NanoTP).

HS


           



You might also be interested in
  • <p>Dr. Godehard W&uuml;stefeld was awarded the Horst Klein Research Prize.</p> <p></p> <p></p>NEWS      25.03.2019

    Godehard Wüstefeld receives the Horst Klein Research Prize

    The physicist Dr. Godehard Wüstefeld was awarded the Horst Klein Research Prize at the annual conference of the German Physical Society. The award recognizes his outstanding scientific achievements in accelerator physics in the development of BESSY II and BESSY VSR. [...]


  • <p>Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained.</p>SCIENCE HIGHLIGHT      20.02.2019

    Water is more homogeneous than expected

    In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours. [...]


  • <p>More than 250 invited guests celebrated the tenth anniversary of HZB on 18 February at the TIPI at the Chancellery.</p>NEWS      18.02.2019

    10 Years of Helmholtz-Zentrum Berlin: A strong partner in the scientific landscape

    Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) is celebrating its tenth anniversary on 18 February 2019 with around 250 invited guests from science, politics and industry. The Centre is one of the world's top institutions and makes a decisive contribution to Berlin as a location for cutting-edge research. This was emphasized by Michael Müller, Governing Mayor of Berlin, in reference to the anniversary. [...]




Newsletter