Femtoslicing erfolgreich verbessert: Neue Möglichkeiten für dynamische Messungen mit ultrakurzen Röntgenpulsen

Das Herz des neuen Zonenplattenmonochromators f&uuml;r<br /> ultraschnelle Physik beim Femtoslicing ist eine Anordnung<br /> von verschiedenen im Hause hergestellten sogenannten<br /> Reflektions-Zonenplatten f&uuml;r verschiedene Photonenenergien<br /> im Bereich zwischen 410 und 1333eV. <br />Foto: A. Firsov, M. Brzhezinskaya

Das Herz des neuen Zonenplattenmonochromators für
ultraschnelle Physik beim Femtoslicing ist eine Anordnung
von verschiedenen im Hause hergestellten sogenannten
Reflektions-Zonenplatten für verschiedene Photonenenergien
im Bereich zwischen 410 und 1333eV.
Foto: A. Firsov, M. Brzhezinskaya

Ein CCD-Bild von der Dispersionsebene 5.08 m hinter <br />der Stickstoff-Linse bei 410 eV in der 3ten <br />Harmonischen des UE56/1 (a) und ein vertikaler <br />Linienscan aus der Mitte, der neben dem Focus auch<br /> die 5te and 7te Harmonische als breite Streifen<br /> am unteren Bildrand zeigt. <br />

Ein CCD-Bild von der Dispersionsebene 5.08 m hinter
der Stickstoff-Linse bei 410 eV in der 3ten
Harmonischen des UE56/1 (a) und ein vertikaler
Linienscan aus der Mitte, der neben dem Focus auch
die 5te and 7te Harmonische als breite Streifen
am unteren Bildrand zeigt.
© K. Holldack

Ultrakurze Röntgenpulse sind eine unentbehrliche Sonde, um ultraschnelle Vorgänge in Festkörpern und Flüssigkeiten sichtbar zu machen. Um diese am Speicherring zu erzeugen, werden beim Femtoslicing ultrakurze Laserpulse auf die relativistischen Elektronen von BESSY II geschossen, die dann ihrerseits Röntgenpulse von nur 100 Femtosekunden Dauer aussenden, einer Zeitskala auf der atomare Ordnungsphenomäne in Festkörpern ablaufen. Den Forschern beim Femtoslicing gelingt es, diese Prozesse nun mit Hilfe einer stroboskopischen Methode aufzunehmen. Kürzlich haben HZB-Kollegen diese weltweit einzigartige Anlage bei BESSY II erfolgreich verbessert und damit noch attraktivere Bedingungen für alle Nutzer geschaffen.
 
Im Kern des Projekts stand der Einbau eines neuen Zonenplatten-Monochromators. Dieses spezielle Hochfluß-Strahlrohr wurde 2012 in enger Zusammenarbeit zwischen dem  Institut für Methoden und Instrumente der Forschung mit Synchrotronstrahlung und dem Institut für Nanometeroptik und -Technologie neu errichtet. „Nach erfolgreicher Inbetriebnahme im November können wir jetzt sagen: Alle anvisierten Ziele haben wir erreicht. Mithilfe des neuen Zonenplatten-Monochromators ist es möglich, die Fokusgröße zu verkleinern, die Auflösung und die Langzeitstabilität zu verbessern. Unsere Nutzer sind hocherfreut“, erläutert der Projektleiter für den Umbau der Femtoslicing-Anlage, Dr. Karsten Holldack.

Die deutlichen Verbesserungen beim Femtoslicing versprechen zusammen mit Top-Up-Modus von BESSY II, einer erhöhten Wiederholrate des Lasersystems von 6 kHz sowie variabler optischer Anregung aufregende neue wissenschaftliche Ergebnisse.

Die Finanzierung war kurzfristig über den internen strategischen Investitionsfond des HZB zur Verfügung gestellt worden. Das Projekt wurde teilweise unterstützt durch den Marie Curie FP7-Reintegration-Grant im Rahmen der 7ten „Community Framework Programms“ der Europäischen Union.

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Nachricht
    17.06.2025
    MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Das schwedische Synchrotron-Labor MAX IV und das Helmholtz-Zentrum Berlin (HZB) mit der Synchrotronstrahlungsquelle BESSY II haben am 16. Juni eine Kooperationsvereinbarung mit fünfjähriger Laufzeit unterzeichnet. Sie schafft den Rahmen für eine verstärkte Zusammenarbeit bei der operativen und technologischen Entwicklung in den Bereichen Beschleunigerforschung und -entwicklung, Strahlführungen und Optik, Experimentierstationen und Probenumgebungen sowie Digitalisierung und Datenwissenschaft.