Discovery of how a key enzyme of the spliceosome exerts its controlling function

Structure of Brr2-protein belongs to a family of enzymes that are called “RNA helicases”.

Structure of Brr2-protein belongs to a family of enzymes that are called “RNA helicases”.

To sustain life, processes in biological cells have to be strictly controlled both in time and in space. By using the MX-Beamline of synchrotron radiation source BESSY II research workers at the Max Planck Institute for Biophysical Chemistry in Göttingen and the Free University of Berlin have elucidated a previously unknown mechanism that regulates one of the essential processes accompanying gene expression in higher organisms. In humans, errors in this control mechanism can lead to blindness. This discovery has been published in the renowned scientific journal Science (23th may 2013).

Traudy Wandersleben and Karine Santos from the research group of Markus Wahl in Berlin determined the atomic structure of the Brr2 protein in contact with the relevant regulatory portion of Prp8. “To do this we used X ray crystallography,” states Markus Wahl. “There are excellent facilities for this kind of research at the BESSY II synchrotrons at the Helmholtz Centre in Berlin, where the necessary specialised instrumentation is available”.

Please find here the complete press release published by Freie Universität Berlin.

Original paper

Mozaffari Jovin, S., Wandersleben, T., Santos, K.F., Will, C.L., Lührmann, R., Wahl, M.C. (2013) Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science, 23 Mai 2013. DOI: ...

Further publications on the subject

[1]    Santos, K. F., Mozaffari Jovin, S., Weber, G., Pena, V., Lührmann, R., Wahl, M. C. (2012) Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc. Natl. Acad. Sci. USA 109, 17418-17423.

[2]    Mozaffari Jovin, S., Santos, K. F., Hsiao, H.-H., Will, C. L., Urlaub, H., Wahl, M. C., Lührmann, R. (2012) The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev. 26, 2422-2434.

Further information::
Homepage of MPI-group Göttingen

Homepage of FU-group Berlin


übernommen von FU

  • Copy link

You might also be interested in

  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.