Highlight: Erstmalige Beobachtung von Undulatorstrahlung mit Bahndrehimpuls

Die Abbildung demonstriert die exzellente Übereinstimmung zwischen Messung (links) und Rechnung mit dem HZB-Code WAVE (rechts).

Die Abbildung demonstriert die exzellente Übereinstimmung zwischen Messung (links) und Rechnung mit dem HZB-Code WAVE (rechts). © J. Bahrdt/HZB

Am Speicherring BESSY II ist es HZB-Wissenschaftlern erstmalig gelungen, 99 eV-Photonen mit Bahndrehimpuls in den höheren Harmonischen eines helikalen Undulators nachzuweisen. Im Sichtbaren werden diese sogenannten singulären Strahlen oder auch OAM-Photonen (Orbital Angular Momentum carrying photons) seit einigen Jahren durch geeignete Phasenmanipulation aus Laserlicht erzeugt. Der nun am HZB gelungene Nachweis ihrer Existenz in der off-axis-Strahlung helikaler Undulatoren - die theoretisch bereits vor fünf Jahren vorhergesagt wurde - weitet den Energiebereich von OAM-Photonen erheblich aus, da helikale Undulatoren an Elektronenbeschleunigern zur Erzeugung von Photonen bis in den Röntgenbereich eingesetzt werden.

Unter normalen Betriebsbedingungen der Synchrotronstrahlungsquelle BESSY II ist die Elektronenstrahlemittanz  - das Phasenraumvolumen der Elektronenpakete - zu groß, um die singuläre Phasenstruktur von OAM-Photonen beobachten zu können. Die Emittanz skaliert jedoch quadratisch mit der Energie: Bei ca. 900 MeV (die Energie einer alten PTB-Optik am BESSY II) beträgt sie deshalb nur noch ein Viertel. Ein Team um Dr. Johannes Bahrdt hat deshalb an einem Messtag im Januar 2013 die Maschine mit gespeichertem Strahl heruntergefahren und die Energie der gespeicherten Elektronen von 1,72 GeV auf 917 MeV abgesenkt. „Bei dieser Prozedur mussten wir alle Speicherringmagnete synchron mitfahren, um die Elektronenverluste zu minimieren“, sagt Johannes Bahrdt, „denn ein Nachinjizieren bei 917 MeV war nicht möglich.“

Bei dem Experiment betrug der Strahlstrom nur noch 1mA bei 8 Stunden Lebensdauer. Der Nachweis der singulären Strahlen erfolgte über ein Interferenzexperiment am Undulator UE56-2. Das erste Modul des Doppelundulators (helikale Polarisation) produzierte die OAM-Photonen, während der zweite Undulator (lineare Polarisation) als Referenzquelle diente. Die räumliche Verteilung der beiden transversal überlagerten Photonenstrahlen wurde mit einem Pinhole vor dem ersten optischen Element abgetastet. Die longitudinale Überlagerung und damit die Interferenz der beiden zunächst räumlich getrennten Lichtpakte erfolgte erst hinter dem Monochromator. Für die direkte Detektion der singulären Phasenverteilung wäre ein komplizierter Wavefront Sensor notwendig gewesen. Das Interferenzexperiment hingegen erzeugt eine aufgrund der Phasenverteilung charakteristische Intensitätsverteilung, die sich mit einer einfachen Photodiode nachweisen lässt. Das Nachweispattern ist eine Spirale. Der Drehsinn der Spirale spiegelt die Helizität der 1. Harmonischen des helikalen Unulators wieder; die Orientierung wird bestimmt durch den Phasenvorschub zwischen den beiden Undulatoren.

Nur in gemeinsamer Anstrengung von Mitarbeitern aus G-IA (P. Kuske, P. Schmid), NP-ABS (R. Müller), aus G-ISRR (K. Holldack) und G-AUND (J. Bahrdt, M. Scheer) war dieses „proof of principle“-Experiment möglich, auch deswegen, weil es außergewöhnliche Maschinenbedingungen erforderte. Photonen mit Bahndrehimpuls werden in Lichtquellen der nächsten Generation, also Energy Recovery Linacs, Ultimate Storage Rings oder Freie Elektronen Lasern, unter ganz normalen Betriebsbedingungen zur Verfügung stehen. Der zusätzliche Freiheitsgrad wird die Entwicklung neuartiger spektroskopischer Experimente, die an jetzigen Quellen noch nicht möglich sind, anstoßen.

Hier gelangen Sie zur Veröffentlichung in Physical Review Letters (DOI: 10.1103/PhysRevLett.111.034801)

hs


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.