First Observation of Undulator Photon Beams Carrying Orbital Angular Momentum

The measurement (left) is impressively well reproduced in a simulation utilizing the HZB-code WAVE.

The measurement (left) is impressively well reproduced in a simulation utilizing the HZB-code WAVE. © J. Bahrdt/HZB

For the first time researchers of HZB observed 99eV photons carrying Orbital Angular Momentum (OAM). The photons were detected in the 2nd harmonic off-axis radiation of a helical undulator. The measurements confirm a theoretical prediction from five years ago. In the visible regime these singular photon beams or OAM-photons can be generated from laser light utilizing phase modulating techniques. The proof-of-principle experiment at BESSY II demonstrates the availability of OAM-photons up to the X-ray regime in low emittance machines, with helical undulators being used for the generation of circularly polarized radiation similar to today’s 3rd generation light sources.

Under normal operation conditions – electron energy of 1.72 GeV - the BESSY II beam emittance (i.e. the electron bunch phase space volume) is too large for the detection of the singular phase structure of OAM-photons. The emittance scales quadratically with the energy, and, thus, at 917 MeV (energy of a former PTB- electron optic) the emittance is reduced roughly by a factor of four which is sufficient for a clear well-defined experiment.  In January 2013 the BESSY II storage ring was ramped down for a 24h shift from 1.72 GeV to 917 MeV. An injection at 917 MeV was not possible and, hence, all storage ring magnets had to be tuned simultaneously during this delicate procedure in order minimize electron losses.

The interference experiment with the double undulator UE56-2 was conducted by a team around Dr. Johannes Bahrdt. One undulator was tuned to helical mode generating OAM photons in the 2nd harmonic. The other undulator served as a reference undulator providing linearly polarized light. The transverse distribution of both photon beams was mapped with a pinhole in front of the 1st optical element. The longitudinal overlap and the interference happened only behind the monochromator. The direct detection of the singular phase distribution of OAM beams would require a complicated wavefront sensor whereas the interference experiment permitted an intensity detection with a simple diode. The signature of the OAMs is a spiral intensity distribution where the orientation is determined by the helicity of the helical undulator and the spiral orientation is a measure of the phase advance between both undulators.

The joint effort of people from several HZB-groups (P. Kuske, P. Schmid: G-IA; R. Müller: NP-ABS, K. Holldack: G-ISRR and J. Bahrdt, M. Scheer: G-AUND) resulted in the success of this experiment, particularly, because it required specific machine conditions and the beam current was only 1mA. Photons carrying orbital angular momentum will be available permanently in synchrotron radiation light sources of the next generation such as Energy Recovery Linacs, Ultimate Storage Rings or Free Electron Lasers. The additional degree of freedom may trigger new spectroscopic experiments which are not possible at existing light sources.

Physical Review Letters (DOI: 10.1103/PhysRevLett.111.034801)

hs

You might also be interested in

  • Humboldt Fellow Alexander Gray comes to HZB
    News
    12.08.2022
    Humboldt Fellow Alexander Gray comes to HZB
    Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.
  • Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Science Highlight
    11.08.2022
    Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Electrical energy from wind or sun can be stored as chemical energy in hydrogen, an excellent fuel and energy carrier. The prerequisite for this, however, is efficient electrolysis of water with inexpensive catalysts. For the oxygen evolution reaction at the anode, nanostructured nickel silicide now promises a significant increase in efficiency. This was demonstrated by a group from the HZB, Technical University of Berlin and the Freie Universität Berlin as part of the CatLab research platform with measurements among others at BESSY II.
  • RBB Abendschau on visit at CatLab
    News
    01.08.2022
    RBB Abendschau on visit at CatLab
    CatLab got a visit from the rbb Abendschau.
    Under the title "Der Weg weg vom Erdgas" (The way away from natural gas), the programme was broadcast on Sunday, 31st July in the rbb Abendschau and will be available in the rbb media library for 7 days.