Ein neues Cluster-Tool für EMIL

Ein Cluster-Tool zur Erforschung neuer Materialien und  Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen. (Bildquelle: Altatech)

Ein Cluster-Tool zur Erforschung neuer Materialien und  Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen. (Bildquelle: Altatech)

Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) und Altatech, ein Unternehmen der Soitec-Gruppe, haben eine Kooperation vereinbart, um neue Materialien für die nächste Generation von hocheffizienten Solarenergiewandlern zu erforschen und zu entwickeln. Dazu gehören insbesondere neue Materialien und innovative Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen.

Im Rahmen der gemeinsamen Forschungsarbeiten wird Altatech ein speziell angepasstes Silizium-Depositionsclustertool auf Basis seiner sogenannten AltaCVD-Plattform im „Energy Materials In-situ Laboratory (EMIL)” des HZB installieren. Dort – direkt am Berliner Elektronen-Synchrotron BESSY des HZB – wollen das Helmholtz-Zentrum und Altatech gemeinsam neue Materialabscheidungsprozesse, funktionelle Grenzflächen und Bauteile für die Solarenergieumwandlung und -speicherung entwickeln.

Altatechs AltaCVD-System wird in EMIL zum Einsatz kommen, um unter anderem verschiedene Morphologien und Legierungen von Silizium, sowie transparente, leitende Oxide und ultradünne Dielektrika abzuscheiden. Diese Stoffklassen werden bei der Herstellung der nächsten Generation von Solarenergie-Baugruppen eine wichtige Rolle spielen. Das Clustersystem soll im EMIL-Gebäude installiert und dort direkt mit einer Röntgenanalyse-Messstation verbunden werden, die von einer BESSY II-Beamline mit hochbrilliantem Röntgenlicht versorgt wird.

HZB und Altatech wollen im Cluster-Tool Depositionstechniken auf Basis von Atomlagen-Abscheidung, Plasma-unterstützter chemischer Gasphasenabscheidung sowie Kathodenzerstäubung auf Substrate anwenden, die in der Größe von kleinsten Proben bis hin zu industriekompatiblen 6-Inch-Wafern reichen. EMILs weltweit einmalige Analysetechniken sollen dann genutzt werden, um Material- und Baugruppeneigenschaften direkt während bzw. zwischen verschiedenen Schritten des Herstellungsprozesses zu analysieren.

„Mit EMIL wollen wir Materialien für neue Hocheffizienz-Photovoltaikzellen und für katalytische Prozesse erforschen, die für zukünftige Solarenergieumwandlungs- und -speicherkonzepte erforderlich sind“, sagt Prof. Dr. Klaus Lips, EMIL-Projektleiter und Chef der „Advanced Analytics“-Gruppe am HZB: „Wir werden diese Materialien mit Methoden der Grundlagenforschung entwickeln und charakterisieren, diese jedoch mit industrietauglichen Verfahren herstellen, um anschließend eine schnelle industrielle Umsetzung möglich zu machen. Das AltaCVD-System ermöglicht es, sehr flexible Präparationsbedingungen mit einer vollständig industriekompatiblen Abscheidungstechnologie zu realisieren. Das gilt für Temperaturen, Prekursoren oder in-situ plasmachemische Reinigung.”

„Diese Kooperation verstärkt die technologische Führungsrolle des AltaCVD-Systems im Bereich Abscheidungstechniken für Hochtechnologie-Materialien“, sagt Jean-Luc Delcarri, Generalmanager von Soitecs Altatech-Gruppe: „Unsere Zusammenarbeit mit dem HZB ermöglicht es uns, diese Technologie an einem führenden Synchrotron einzusetzen. Gemeinsam mit dem HZB werden wir die Tür öffnen zu neuen Möglichkeiten in der Erforschung von Energiematerialien. So können wir einen Beitrag leisten, dass Wissenschaftler die Herausforderungen der zukünftigen weltweiten Energieversorgung angehen können.“


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Zusammenarbeit mit Korea Institute of Energy Research
    Nachricht
    23.04.2024
    Zusammenarbeit mit Korea Institute of Energy Research
    Am Freitag, den 19. April 2024, haben der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin, Bernd Rech, und der Präsident des Korea Institute of Energy Research (KIER), Yi Chang-Keun, in Daejeon (Südkorea) ein Memorandum of Understanding (MOU) unterzeichnet.