A new cluster tool for EMIL

A cluster tool for the research on new classes of materials and device structures for photovoltaic and photocatalysis applications. (Source: Altatech)

A cluster tool for the research on new classes of materials and device structures for photovoltaic and photocatalysis applications. (Source: Altatech)

The Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) and Altatech, a subsidiary of Soitec, have launched a collaborative partnership to research and develop materials for the next generation of high-efficiency solar cells, including new classes of materials and innovative device structures for photovoltaic and photocatalysis applications.

As part of the organizations’ joint effort, Altatech will install a new single-substrate multi-chamber solution, an AltaCVD system, at HZB’s newly constructed Energy Materials Insitu Laboratory (EMIL) at the synchrotron light source BESSY II facility in Berlin. Together, HZB and Altatech will investigate new materials-deposition processes, functional interfaces and device structures for solar energy conversion and storage.

Altatech’s new AltaCVD system will be used in HZB’s EMIL lab to deposit amorphous silicon (alloys), transparent conductive oxides and ultra-thin dielectrics used in fabricating next generation solar energy devices. The CVD system will be hosted by the new EMIL building, adjacent to HZB´s third-generation storage ring BESSY II. The cluster tool will be directly connected to a state-of-the-art X-ray analytical end-station, which accesses a dedicated beam line from BESSY II. The partner organizations will conduct atomic-layer deposition, plasmaenhanced chemical vapor deposition and physical vapor deposition on substrates ranging from small research samples up to fully industry-compatible six-inch wafers and use EMIL’s outstanding analytical capabilities to analyze material and interface properties in between successive processing steps.

“EMIL aims at exploring materials for high-efficiency photovoltaic cells and new catalytic processes for future solar energy generation and storage concepts. We will develop and characterize these materials with basic energy research methods, but prepare them with industrially related methods to ensure rapid industrial implementation,” says Prof. Klaus Lips, head of the EMIL project and HZB’s Advanced Analytics Group. “The AltaCVD system provides us with a unique combination of a highly flexible design in terms of temperatures, precursors, plasma cleaning, etc. with a fully industrial-compatible deposition technology.”

“This order reinforces the AltaCVD system’s leadership position in advanced materialdeposition applications,” says Jean-Luc Delcarri, general manager of Soitec’s Altatech subsidiary. “Our collaboration with the Helmholtz-Zentrum Berlin allows us to apply our advanced material-deposition technology at a state-of-the-art synchrotron radiation facility. Together, we are opening the door to a new era in advanced renewable-energy development that will help researchers to tackle the challenges of future world energy needs.”


You might also be interested in

  • Dynamic measurements in liquids now possible in the laboratory
    Science Highlight
    23.05.2024
    Dynamic measurements in liquids now possible in the laboratory
    A team of researchers in Berlin has developed a laboratory spectrometer for analysing chemical processes in solution - with a time resolution of 500 ps. This is of interest not only for the study of molecular processes in biology, but also for the development of new catalyst materials. Until now, however, this usually required synchrotron radiation, which is only available at large, modern X-ray sources such as BESSY II. The process now works on a laboratory scale using a plasma light source.
  • Key role of nickel ions in the Simons process discovered
    Science Highlight
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

  • Watching indium phosphide at work
    Science Highlight
    15.05.2024
    Watching indium phosphide at work
    Indium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.