Eine neue Klasse von Halbleitern für effiziente nano-optische Bauteile

Die Probe besteht aus einer Lage Wolframselenid (orange), die auf einer Schicht aus Molybdänsulfid (blau) aufgebracht ist. Untersuchungen  mit dem SPEEM-Mikroskop an BESSY II zeigen, dass durch Ladungstransfer zwischen den beiden Halbleiterschichten ein elektrisches Potential von bis zu 400meV besteht.

Die Probe besteht aus einer Lage Wolframselenid (orange), die auf einer Schicht aus Molybdänsulfid (blau) aufgebracht ist. Untersuchungen mit dem SPEEM-Mikroskop an BESSY II zeigen, dass durch Ladungstransfer zwischen den beiden Halbleiterschichten ein elektrisches Potential von bis zu 400meV besteht. © F. Kronast/HZB

Wie die Infoplattform nanotechweb.org berichtet, könnten sich dünne Schichten aus bestimmten Chalkogeniden als nanooptische Bauelemente eignen, zum Beispiel als LEDs, Laser oder Solarzellen.  Einatomare Lagen aus solchen Verbindungen verhalten sich wie zweidimensionale Halbleiter. Nun haben Wissenschaftler der University of California und des Lawrence Berkeley National Lab eine so genannte Heteroverbindung aus zwei unterschiedlichen Chalkogeniden hergestellt und ihre elektronischen und optischen Eigenschaften auch am HZB an BESSY II untersucht.

Die Probe bestand aus einer einatomaren Lage aus Wolframselenid, die auf Molybdänsulfid aufgebracht war. „An BESSY II haben wir mit lokaler Röntgen-Photoemissionsspektroskopie am SPEEM-Mikroskop gesehen,  dass beide Schichten elektronisch miteinander koppeln und ein Ladungstransfer stattfindet“, sagt Dr. Florian Kronast vom HZB. Damit sind solche Chalkogenid-Heteroverbindungen interessante Kandidaten für neue Bauelemente.

Zum Artikel in nanotechweb.org:
Die Originalarbeit wurde in den PNAS publiziert: PNAS doi: 10.1073/pnas.1405435111

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.