NEAT: The chamber from Spain - HZB future log's latest addition

At first, the various parts are carefully unloaded so that they can be lifted quickly into the building through the roof of the NEAT building's newest addition.</p>
<p>

At first, the various parts are carefully unloaded so that they can be lifted quickly into the building through the roof of the NEAT building's newest addition.

© Stefanie Kodalle

Since the HZB future log (#HZBzlog) went live in March of this year, there have been a total of 15 episodes on building and developing our future projects. The focus has been on three projects in particular: high field magnet (for a total of seven episodes), EMIL (five episodes), and BESSY-VSR (three episodes). Next, the NEAT project team is taking the #HZBzlog stage.

The first episode entitled "The chamber from Spain" lets those watching and reading trace the detector chamber's course. Constructed in Spain, the chamber is slated to arrive at the HZB within the next couple of days. Witnessing the chamber's spectacular lift into the neutron conductor hall through the building's ceiling will be one of the episode's highlights.
 
The first NEAT episode will pick up where the current high field magnet (HFM) episode "Stairway to Heaven" left off. The episode's title, which is loosely based on the Led Zeppelin rock ballad of the same name, is no accident. Because if the electricity tests turn out successful, the HFM team will indeed feel fairly heavenly, meaning not much will stand in the way of successfully starting operation of the magnet.

As always, we will also be letting you know about stuff to know about current topics that are part of the team's research activities. In the case of "Stairway to Heaven," it might look something like this: Hartmut Ehmler talks about how the team gradually increases the electric current's strength that is being sent through the magnet. He tells of unexpected rises in temperature and of the team's response to them. Right after, Jonas Böhm explains facts to know about helium, the coolant of extremes. And Antonia Rötger will be speaking on the topic of quenching.

The NEAT episode will also provide interesting tidbits and special features on the topic of the construction work including a piece on the "travel window." Not sure what we're talking about? Just drop by and stay tuned to #hzbzlog (www.hzbzlog.com). You're of course invited to comment or ask questions. For HZB staff, that bit will be a piece of cake. All they have to do is click the "comment" button and register using their HZB email address.

IH

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.
  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.