Neue in situ Zelle für Untersuchungen an festen und flüssigen Proben und deren Grenzflächen unter elektrischer Spannung

<br />&bdquo;Explosionszeichnung&ldquo; der elektrochemischen Flie&szlig;zelle f&uuml;r R&ouml;ntgenspektroskopie mit weichem R&ouml;ntgenlicht. Die Membran (gelb) ist mit einem Metall beschichtet, das auch als Arbeitselektrode fungiert und als Tr&auml;ger f&uuml;r feste Proben.  Die Gegen- und Referenz-Elektroden sind in der Fl&uuml;ssigkeits-Kammer platziert. Schl&auml;uche erlauben den raschen Austausch von Fl&uuml;ssigkeiten.


„Explosionszeichnung“ der elektrochemischen Fließzelle für Röntgenspektroskopie mit weichem Röntgenlicht. Die Membran (gelb) ist mit einem Metall beschichtet, das auch als Arbeitselektrode fungiert und als Träger für feste Proben. Die Gegen- und Referenz-Elektroden sind in der Flüssigkeits-Kammer platziert. Schläuche erlauben den raschen Austausch von Flüssigkeiten. © HZB

Ein Team um Dr. Kathrin Aziz-Lange hat eine neue in situ Zelle für Röntgenspektroskopie an flüssigen Proben und deren Grenzflächen zu Festkörpern entwickelt. Das Besondere ist, dass in der Zelle Elektroden sitzen, die die Probe zwischen oder während den Messungen unter Spannung setzen können. Die dadurch ausgelösten Veränderungen in der elektronischen Struktur der Probe können dann in Echtzeit mithilfe von Röntgenabsorptions- und Röntgenemissionsspektroskopie beobachtet werden.

An der Arbeit waren Christoph Schwanke vom HZB Institut für Solare Brennstoffe sowie Ronny Golnak und Dr. Jie Xiao vom HZB Institut Methoden der Materialentwicklung beteiligt.

„Diese neue Zelle ist interessant, wenn man zum Beispiel die Funktionsweise von Materialien für katalytische Prozesse, in Elektrolysezellen oder in wieder aufladbaren Batterien besser verstehen will“, erklärt Kathrin Aziz-Lange. Solche Materialien spielen in der Energieforschung eine große Rolle, etwa bei der Wasserstofferzeugung durch die elektrolytische Aufspaltung von Wasser, in Brennstoffzellen, in Farbstoffsolarzellen aber auch bei der Entwicklung effizienterer Batterien.


Die neu entwickelte Zelle wurde in der Fachzeitschrift „Review of Scientific Instruments“ (5. November 2014, Vol. 85, 10)  vorgestellt, sie hat bereits erste Ergebnisse erzielt und kann auch von Messgästen genutzt werden.


"Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy," has been published online today, 5 November 2014, in Review of Scientific Instruments (Vol.85, Issue 10).

DOI: 10.1063/1.4899063

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.