Winter-Workshop “Microstructure Characterization and Modeling for Solar Cells”

© HZB

Vor winterlicher Kulisse am schönen Spitzingsee (Bayern) fand vom 22. bis 26.02.2015 im Rahmen des Helmholtz Virtuellen Instituts "Microstructure Control for Thin-Film Solar Cells" ein Workshop statt. The next winter workshop will be planned for 2017.

Eingeladene Gäste hielten Vorträge über die theoretischen Grundlagen zu Kornwachstum, quantitative Charakterisierung von Materialstruktur, Zusammenhänge zwischen Mikrostruktur und Bauelementfunktion von Solarzellen, Phasenfeldsimulationen von Kristallwachstum sowie lokal aufgelöster, elektrischer Charakterisierung von Defektdichten. Ergänzt wurde das Programm durch Beiträge zu Wachstumkontrolle von Dünnschichten mittels Röntgenbeugung, Analysen von strukturellen Defekten mittels verschiedener Methoden von der Millimeter- bis zur Subnanometerskala, Simulationen mittels Dichtefunktionaltheorie, Molekulardynamik und Phasenfeldtheorie von Punktdefekten, Dynamik struktureller Defekte und Kornwachstum, sowie zu makroskopischen, optoelektronischen Analysen von Materialsystemen und Solarzellen.  

Der Winter-Workshop bot ausreichend Gelegenheit, um Diskussionen zu vertiefen und weitere Zusammenarbeiten zu planen. An zwei Nachmittagen wurden ausserdem eine Schneeschuhwanderung und Eisstockschiessen organisiert.

Die Projektpartner des  Helmholtz Virtuellen Instituts "Microstructure Control for Thin-Film Solar Cells" nutzten die Gelegenheit, um in Arbeitsgruppen die strategische Ausrichtung zu schärfen und Vorbereitungen für die im Juni 2015 anstehende Zwischenevaluation des Helmholtz Virtuellen Instituts zu treffen.

Über das Helmholtz-Virtuelle Institut "Microstructure Control for Thin-Film Solar Cells"

Photovoltaische Bauelemente, die zur direkten Umwandlung von Sonnenenergie in Elektrizität betrieben werden, sind in kurzer Zeit zu einer der wichtigsten „sauberen“ Energiequellen geworden. Die Optimierung von Dünnschichtsolarzellen für eine solche Anwendung bestand in Vergangenheit hauptsächlich aus systematischem Ausprobieren. Ein detailliertes Verständnis der Beziehungen zwischen Wachstumsprozessen, strukturellen Defekten, Eigenspannung und elektrischen Eigenschaften würden sich sehr positiv auf die Entwicklung dieser Bauelemente auswirken. In dem Helmholtz-Virtuellen-Institut wird die Bildung struktureller Defekte und Eigenspannung während des Wachstums von Dünnschichtschichtsolarzellen durch Kombination verschiedener Experiment- und Simulationstechniken untersucht.

Die Virtuellen Institute werden mit jährlich bis zu 600.000 Euro über drei bis fünf Jahre aus dem Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft gefördert. Dazu kommen Eigenmittel der Partner

Gefördert von der Helmholtz Gemeinschaft

Leitendes Zentrum: Helmholtz-Zentrum Berlin für Materialien und Energie

Beteiligte Partner: HZB, TU Berlin, FU Berlin, TU Darmstadt, University of Oxford (UK), ETH Zürich (Schweiz), SuperStem (UK)

Sprecher: Prof. Dr. Susan Schorr, HZB

Laufzeit: Nov. 2012 bis Okt. 2017


D. Abou-Ras/arö/sz

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.