HZB wirbt EU-Fördermittel für Solarzellenforschung ein

Im EMIL-Teillabor „SISSY“ (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron) können Materialsysteme für die Photovoltaik unter Ultrahochvakuum und mit einer Vielzahl an Methoden untersucht werden.

Im EMIL-Teillabor „SISSY“ (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron) können Materialsysteme für die Photovoltaik unter Ultrahochvakuum und mit einer Vielzahl an Methoden untersucht werden. © R.G. Wilks

Marcus Bär und sein Team sind an zwei internationalen Projekten beteiligt, die durch das EU-Forschungsrahmenprogramm „Horizon 2020“ gefördert werden. Beide Forschungsvorhaben befassen sich mit der Entwicklung und Optimierung von hocheffizienten Dünnschichtsolarzellen auf der Basis von Chalkopyriten („Sharc25“) bzw. Kesteriten („SWInG“).  Für das HZB bringen sie  zusammen rund 0,9 Mio. Euro zusätzliche Forschungsmittel für die Solarzellenforschung ein.

Die beiden Projekte Sharc25 und SWInG werden in der Sektion Low Carbon Energy gefördert. „Das HZB bringt bei diesen Projekten insbesondere hervorragende Möglichkeiten für die Analyse und Charakterisierung von Materialien und Schichtstapeln ein. So können wir schon bald mit dem Instrumentenpark im neu errichteten Labor EMIL an BESSY II die Grenzflächeneigenschaften von Solarzellstrukturen mit verschiedenen komplementären Methoden untersuchen“, erklärt Prof. Dr. Marcus Bär, der am HZB die Nachwuchsgruppe Grenzflächendesign leitet.

Sharc25 steht für „Super high efficiency Cu(In, Ga)Se2 thin-film solar cells approaching 25%“. Dabei handelt es sich um Konzepte für so genannte CIGSe-Dünnschicht-Solarzellen aus Kupfer, Indium, Gallium und Selen. Angestrebt werden  Wirkungsgrade von 25 %, was deutlich über dem Wirkungsgrad von polykristallinen Siliziumzellen liegt. Eine solche Effizienzsteigerung würde der europäischen PV-Industrie einen signifikanten Wettbewerbsvorteil verschaffen. Das Forschungsvorhaben wird durch das Zentrum für Sonnenenergie und Wasserstoff-Forschung in Baden-Württemberg (ZSW) koordiniert  und bezieht Partner aus sieben Ländern ein. Das Projekt wird mit insgesamt 6,15 Mio. Euro gefördert, davon gehen 450.000 Euro an das HZB. „Wir werden die Eigenschaften der Schichtstapel systematisch untersuchen, um insbesondere die Prozesse an den Grenzflächen zu verstehen. Das ist die Grundvoraussetzung, um die Effizienz bis nahe an ihre theoretische Grenze  hochzutreiben“, sagt Marcus Bär.

SWInG (Development of Thin Film Solar Cells based on Wide Band Gap Kesterite Absorbers) hat ein Volumen von 3,8 Mio. Euro und wird von der Interuniversitair Micro-Elektronica Centrum (imec), Belgien) koordiniert, beteiligt sind zudem Partner aus den Niederlanden, Frankreich, Deutschland und Schweden. An das HZB fließen 450.000 Euro. Ziel des Vorhabens ist es, günstige und zuverlässige Tandem-Solarzellen zu entwickeln, die das Potenzial haben, über 30 % des Sonnenlichts in Strom umzuwandeln. Die dafür benötigten Solarzellabsorber mit großer Bandlücke sollen durch eine Modifizierung der Kesterit-Komposition erreicht werden. „Kesterit-Absorberschichten haben den Vorteil, dass sie aus reichlich verfügbaren Elementen bestehen. Außerdem können wir über die Komposition die Bandlücken gezielt einstellen und diese so optimal an die Anforderungen in der Tandem-Solarzelle anpassen“, erklärt Bär. 

arö

Das könnte Sie auch interessieren

  • Netzwerktag der Allianz für Bauwerkintegrierte Photovoltaik am 14.02.
    Nachricht
    06.02.2023
    Netzwerktag der Allianz für Bauwerkintegrierte Photovoltaik am 14.02.
    Der 2. Netzwerktag der Allianz BIPV findet statt am 14.02.2023 von 10 bis 16 Uhr statt. Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Science Highlight
    27.01.2023
    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im normalen Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur Vorläuferlösung des Perowskits hinzu, verbessert sich die Stabilität enorm. Dies zeigt nun ein internationales Team unter der Leitung von Antonio Abate, HZB, im Fachjournal Science. Die so hergestellten Solarzellen erreichen Wirkungsgrade von deutlich über 24 Prozent, die selbst bei dramatischen Temperaturschwankungen zwischen -60 und +80 Grad Celsius über hundert Zyklen kaum sinken. Das entspricht etwa einem Jahr im Außeneinsatz.

  • HZB-Physiker folgt Ruf nach Südkorea
    Nachricht
    25.01.2023
    HZB-Physiker folgt Ruf nach Südkorea
    Seit 2016 hat der Beschleunigerphysiker Ji-Gwang Hwang am HZB in der Abteilung Speicherring- und Strahlphysik geforscht. In mehreren Projekten hat er wichtige Beiträge zur Strahldiagnostik geleistet. Nun kehrt er in seine Heimat Südkorea zurück, als Professor für Physik an der Gangneung-Wonju National University.