EU funding strengthens solar cell research at HZB

Ultra-high vacuum system in the Energy Materials In-Situ Lab (EMIL) that will combine industry-relevant deposition tools with a suite of complementary advanced characterization methods.

Ultra-high vacuum system in the Energy Materials In-Situ Lab (EMIL) that will combine industry-relevant deposition tools with a suite of complementary advanced characterization methods. © R.G. Wilks

Marcus Bär and his team are participating in two international projects being funded under the EU Horizon 2020 research programme. Both research projects are concerned with development and optimisation of high-efficiency thin-film solar cells based on chalcopyrites (“Sharc 25") and kesterites (“SWInG”). These two projects will together bring in about 900,000 EUR of additional research funding for solar cell research.

The two projects, Sharc25 and SWInG, will be funded under the EU’s Low-Carbon Energy section. “The advanced material characterisation at HZB will focus on the interface characteristics of solar cell structures. Particularly, the complementarity of the suite of instruments at the newly established EMIL lab at BESSY II will benefit this research”, explains Prof. Marcus Bär, who heads the Young Investigator Group - Interface Design at HZB.

“Sharc25" stands for “Super High-Efficiency Cu(In,Ga)Se2 Thin-Film Solar Cells Approaching 25%”. The project will focus on pushing the performance of Cu(In,Ga)Se2 (CIGSe) thin-film solar cells towards 25 % conversion efficiency, which is considerably higher than the efficiency of market-dominating polycrystalline silicon cells. Achieving this level of efficiency would provide a significant competitive advantage for the European thin film PV industry. The research project will be coordinated by the Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) and involves research partners from seven European countries. The project funding is 6.15 million EUR in total, of which 450,000 EUR is allocated to HZB. “We will be systematically investigating the layer stacks, particularly focusing on understanding the properties and processes at the interfaces. Optimising the interface behaviour is a fundamental prerequisite for driving the efficiency towards its theoretical limit”, says Bär.

SWInG (Development of Thin-Film Solar Cells based on Wide Band-Gap Kesterite Absorbers) is to receive 3.8 million EUR and will be coordinated by imec (Interuniversity Micro-Electronics Centre/Belgium) and includes partners from the Netherlands, France, Germany, and Sweden. 450,000 EUR are allocated to HZB. The objective of the research is to develop inexpensive, dependable tandem solar cells that have the potential of converting more than 30% of sunlight into electricity. The wide band-gap solar cell absorbers necessary for this will be achieved by modifying the composition of the kesterite. “Kesterite absorber layers are desirable, because they consist of Earth-abundant elements. In addition, the band gap can be adjusted by varying the composition of the material, matching it to the requirements of the tandem solar cell”, explains Bär.

arö

You might also be interested in

  • NETWORK DAY of the Alliance for Building-Integrated Photovoltaics on 14.02.
    News
    06.02.2023
    NETWORK DAY of the Alliance for Building-Integrated Photovoltaics on 14.02.
    The 2nd BIPV Alliance Network Day will take place on 14.02.2023 from 10 am to 4 pm. The HZB, a member of the BIPV Alliance, is pleased to host the industry-wide exchange. In addition to practical experiences from representatives from architecture, façade construction and applied research, the focus will be on direct exchange and discussion.

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.