Erfolgsquote 100 Prozent: Drittmittel für Projekte zu Solaren Brennstoffen

Am HZB-Institut für Solare Brennstoffe werden auch nanostrukturierte Metalloxide auf ihre Eignung als effiziente und preiswerte Katalysatoren für die künstliche Photosynthese untersucht.

Am HZB-Institut für Solare Brennstoffe werden auch nanostrukturierte Metalloxide auf ihre Eignung als effiziente und preiswerte Katalysatoren für die künstliche Photosynthese untersucht. © HZB

Die flüchtige Energie der Sonne umzuwandeln und zu speichern, zählt zu den großen Herausforderungen der Energiewende. Über eine „künstliche Photosynthese“ kann Solarenergie zur Erzeugung von Wasserstoff genutzt werden. Forscherteams am HZB-Institut für Solare Brennstoffe arbeiten an neuen anorganischen Materialsystemen, um kompakte, robuste und preiswerte Lösungen für diese künstliche Photosynthese zu entwickeln. Gemeinsam mit Partnern aus Universitäten haben sie vier Forschungsvorhaben bei der Deutschen Forschungsgemeinschaft DFG im Schwerpunktprogramm „Regenerativ produzierte Brennstoffe durch lichtinduzierte Wasserspaltung“ (SPP 1613) eingereicht. Alle vier Projekte werden nun durch die DFG gefördert.

„Insgesamt konnte nur die Hälfte der eingereichten Forschungsvorhaben bewilligt werden, in diesem harten Wettbewerb ist eine Erfolgsquote von 100 Prozent wirklich bemerkenswert”, sagt Professor Roel van de Krol, der das HZB-Institut für Solare Brennstoffe leitet. „Das bedeutet für uns, dass wir die Aktivitäten unseres Instituts weiter verstärken und ausbauen können.“ Für die ersten drei Projekte hat die DFG die Weiterführung für die nächsten drei Jahre bewilligt, das vierte Projekt ist ein neues Forschungsvorhaben. 

Am HZB-Institut für Solare Brennstoffe arbeiten die Forschungsgruppen daran, monolithische Materialsysteme zu entwickeln,  bei denen halbleitende Absorber und Katalysatoren in einer Struktur integriert sind. Dabei untersuchen und optimieren sie die photonischen Anregungen, die Sonnenlicht in den Halbleiterstrukturen auslöst, genauso wie die Prozesse an den Katalysatorschichten, an denen sich Wasserstoffgas bildet.

Die Vision ist es, die Energie des Sonnenlichts in Form von chemischer Energie zu speichern, durch die Aufspaltung von Wasser in Sauerstoff und Wasserstoff. Wasserstoff besitzt eine hohe gravimetrische Energiedichte, lässt sich gut speichern und kann bei Bedarf direkt in Brennstoffzellen Strom erzeugen oder auch als Ausgangsmaterial für die Herstellung künstlicher Kohlenwasserstoff-Brennstoffe genutzt werden.


Die Forschungsvorhaben im Einzelnen:

  • Development of catalysts, namely manganese oxides and molybdenum sulphides, for an implementation in a light-driven water-splitting device using a multi-junction solar cell. Partner: Prof. H. Dau (PI, FU-Berlin), Prof. P. Kurz (University Freiburg i. Br.), Prof. S. Fiechter (HZB).
  • High-throughput characterization of multinary transition metal oxide and oxynitride libraries. New materials for solar water splitting with improved properties. Partner: Prof. Wolfgang Schuhmann (PI, Ruhr University Bochum), Prof. Alfred Ludwig (Ruhr University Bochum), Prof. S. Fiechter (HZB).
  • Novel thin film composites and co-catalysts for visible light-induced water splitting. Partner: M. Behrens (Uni Duisburg), A. Fischer (Uni Freiburg), M. Lerch (TU Berlin), T. Schedel-Niedrig (HZB).
  • Development of optimum bandgap photoanodes for tandem water-splitting cells based on doped complex metal oxides and III-V semiconductors coupled to water oxidation electrocatalysts. Partner: R. Beranek (PI, Ruhr University Bochum), A. Devi (Ruhr University Bochum), R. Eichberger (HZB).

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.