Poster award for MatSEC PhD student at the MRS Spring Meeting

At the MRS Spring Meeting in San Francisco, Kai Neldner was awarded for his poster contribution.

At the MRS Spring Meeting in San Francisco, Kai Neldner was awarded for his poster contribution.

The poster contribution of Kai Neldner (HZB-Department Crystallography) was awarded a poster price of the Symposium "Thin-Film Compound Semiconductors" at the MRS Spring Meeting in San Francisco. Kai Neldner, a PhD student in the HZB Graduate School "Materials for Solar Energy Conversion" (MatSEC) has presented results on structural properties of Kesterites (Cu2ZnSnS4 - CZTS) in relation to its stoichiometry deviations.

The best performances of Kesterite-based thin film solar cells with converion efficiencies of 12.6% were obtained with an absorber material quite different from the stoichiometric compound Cu2ZnSn(S,Se)4, especially with a Cu-poor/Zn-rich composition. Because the electronic properties of a semiconductor are strongly related to its crystal structure, it is of great interest to study the nature of stoichiometry deviations systematically and to connect issues such as phase existence limits.

Kai Neldner synthesized off-stoichiometric CZTS powder samples by solid state reaction and studied the structural and chemical properties. He applied different analytical methods using also the HZB's large scale facilities BESSY II and BER II. With his obtained results he was able to prove  that CZTS can accomodate deviations from stoichiometry without collapse of the kesterite type structure by the formation of certain point defects. Thus the crystal structure of CZTS can self-adapt to Cu-poor/Zn-rich and Cu-rich/Zn-poor compositions without any structural changes except in terms of the cation distribution.

Susan Schorr

  • Copy link

You might also be interested in

  • Nanoislands on silicon with switchable topological textures
    Science Highlight
    20.01.2025
    Nanoislands on silicon with switchable topological textures
    Nanostructures with specific electromagnetic patterns promise applications in nanoelectronics and future information technologies. However, it is very challenging to control those patterns. Now, a team at HZB examined a specific class of nanoislands on silicon with interesting chiral, swirling polar textures, which can be stabilised and even reversibly switched by an external electric field.
  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.