Auf dem Weg zu Biosensoren mit Graphen

Die Zeichnung veranschaulicht wie Maleimid-Verbindungen an der Graphenoberfl&auml;che andocken. Dabei liegt die Graphen-Monolage auf einer d&uuml;nnen Schicht aus Siliziumnitrid (rot) auf einer Quarzmikrowaage (blau) und kann mit einem Goldkontakt (gelb) unter Spannung gesetzt werden.</p>
<p>Illustration: Marc A. Gluba/HZB

Die Zeichnung veranschaulicht wie Maleimid-Verbindungen an der Graphenoberfläche andocken. Dabei liegt die Graphen-Monolage auf einer dünnen Schicht aus Siliziumnitrid (rot) auf einer Quarzmikrowaage (blau) und kann mit einem Goldkontakt (gelb) unter Spannung gesetzt werden.

Illustration: Marc A. Gluba/HZB

Erstmals ist es einem Team gelungen, nicht nur präzise zu messen, sondern sogar zu steuern, wie stark eine Graphenschicht eine organische Verbindung absorbiert. Dies könnte in Zukunft ermöglichen, Graphen als empfindlichen Sensor für Biomoleküle zu nutzen.

Reiner Kohlenstoff tritt in vielfältiger Gestalt auf: zu den klassischen Strukturen von Diamant, Graphit und Kohle sind in letzter Zeit auch exotischere Geschwister dazugekommen, zum Beispiel Graphen. Die Struktur ähnelt einer Bienenwabe, sie besteht aus sechseckigen Maschen, an deren Ecken stets ein Kohlenstoffatom sitzt und ist nur eine einzige Atomschicht dick, also quasi zweidimensional. Dabei ist Graphen extrem leitfähig, völlig transparent und mechanisch wie chemisch äußerst belastbar.

Graphen ist bislang nicht sehr wählerisch

Dass Graphen sich grundsätzlich auch als hochempfindlicher Sensor zum Nachweis organischer Moleküle eignet, ist schon länger bekannt. Denn sobald fremde Moleküle andocken, sinkt die elektrische Leitfähigkeit des Graphens. Das Problem ist nur: Das passiert bei fast jedem Molekül, Graphen ist also nicht sehr selektiv, so dass unterschiedliche Moleküle nicht zu unterscheiden sind. So ist es als Sensor nicht zu gebrauchen.

Jetzt: Halterungen für "Schloss-Moleküle" angebracht

Nun hat ein Team vom HZB-Institut für Silizium-Photovoltaik einen interessanten Weg beschritten, um die Selektivität zu erhöhen: Es gelang ihnen, Graphen elektrochemisch zu funktionalisieren und für die Aufnahme von Sonden-Molekülen vorzubereiten. Dafür wurden aus einer organischen Lösung über dem Graphen para-Maleimidophenyl-Gruppen auf die Graphen-Oberfläche aufgebracht. Diese organischen Moleküle funktionieren wie Halterungen, an die im nächsten Schritt die Sonden-Moleküle angebracht werden können. „Aufgrund dieser Moleküle kann das Graphen nun, ähnlich dem Schlüssel-Schloss-Prinzip, zur Detektion von verschiedensten Stoffen verwendet werden“ erklärt Dr. Marc Gluba. Die „Schloss“-Moleküle auf der Oberfläche sind hoch selektiv und nehmen ausschließlich die passenden „Schlüssel“-Moleküle auf.

Großflächige Graphenproben am HZB

Auch andere Forschungsgruppen hatten schon in dieser Richtung Versuche angestellt, allerdings standen ihnen nur winzig kleine Graphenflöckchen mit Durchmessern im Mikrometerbereich zur Verfügung, so dass von den Rändern ausgelöste Effekte dominierten. Am HZB haben Physiker und Chemiker dagegen Graphenflächen von mehreren Quadratzentimetern hergestellt, so dass Randeffekte im Vergleich zu den Prozessen in der Fläche kaum noch eine Rolle spielen. Die Graphenschicht brachten sie auf einer Quarzmikrowaage auf. Jede Massenzunahme verändert dabei die Schwingfrequenz des Quarzkristalls, wodurch kleinste Massen bis hin zu Einzelmoleküllagen messbar werden.

Präzise Messung und Steuerung
 
„Wir konnten damit erstmals präzise und quantitativ nachweisen, wie viele Moleküle tatsächlich auf der Oberfläche des Graphens aufgebracht wurden“, berichtet der Nachwuchsforscher Felix Rösicke, der diese Frage für seine Doktorarbeit untersucht hat. „Mit Hilfe einer angelegten Spannung können wir darüber hinaus genau steuern, wie viele Moleküle am Graphen andocken“, erklärt Dr. Jörg Rappich vom HZB-Institut für Silizium-Photovoltaik, der Rösicke betreut.

„Die Hoffnungen, die sich mit Graphen verbinden, sind wirklich fantastisch“, sagt Prof. Dr. Norbert Nickel, Leiter der Arbeitsgruppe. Als Vision könne man sich zum Beispiel ein wirklich preisgünstiges „Lab on a Chip“ vorstellen, in das man einen einzigen Blutstropfen gibt, und sofort Werte für medizinisch interessante Parameter etc. erhält.

Anmerkung: Felix Rösicke führt seine Doktorarbeit im Rahmen der School of Analytical Sciences Adlerhof (SALSA) an der Humboldt-Universität zu Berlin und am HZB durch.

Publikation:
Quantifying the electrochemical maleimidation of large area graphene
F. Rösicke, M.A. Gluba, K. Hinrichs, Guoguang Sun, N.H. Nickel, J. Rappich
doi:10.1016/j.elecom.2015.05.010

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.