HZB receives financial support for improving the manufacturing process for CIGS solar cells

Sebastian Schmidt demonstrating one of the CIGS-Modules.

Sebastian Schmidt demonstrating one of the CIGS-Modules. © HZB

The Helmholtz-Zentrum Berlin (HZB) has pulled in a large project for further improving the manufacturing process for CIGS thin-film solar cells together with partners in Germany and from the Netherlands. The atmospheric pressure process operates without involving toxic gases and will be more economical. It will run under the acronym ACCESS-CIGS, which stands for “Atmospheric European Cooperation in Science and Technology (COST) Competitive Elemental Sulpho-Selenisation for CIGS”.

Experts at the Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) in Adlershof are developing an innovative process to fabricate CIGS layers for application in thin-film solar cells. CIGS stands for the compound Cu(In,Ga)(Se,S)2, consisting of copper, indium, gallium, selenium and sulphur. Polycrystalline CIGS solar cell technology is noted for its high efficiencies at the solar-cell level and high energy yields for solar modules.

The process pursued at PVcomB does not require a vacuum and utilises elementary selenium and sulphur to convert the metallic precursor layer of copper-indium-gallium to a polycrystalline CIGS semiconductor layer. This has the advantage that the process can be carried out without the use of toxic gases such as hydrogen selenide (H2Se), saving on production costs. This might permit the manufacture of CIGS solar modules to be considerably more economical and thus support the currently difficult market situation.

PVcomB has been successful in attracting funding of 800 000 EUR under the SOLAR-ERA.NET Initiative. Staff will be working on the technology as part of a bi-national European consortium over the next two years to optimise the addition of selenium and improve its influence on the crystallisation process.

The project will be carried out in cooperation with the companies TNO/Solliance and Smit Thermal Solutions, both located in Eindhoven, Netherlands, and with the firm Dr. Eberl MBE Komponenten in Weil der Stadt on the German side.

red.

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.