Neuer Effekt beim Laserinduzierten Umschalten von Bits für höhere Speicherdichten

BFO hat eine Perowskit-Kristallstruktur.

BFO hat eine Perowskit-Kristallstruktur. © Universität Tokio

Ein internationales Team hat an BESSY II eine neue Möglichkeit entdeckt, wie sich die Informationsdichte in Speichermedien künftig weiter erhöhen lässt. Sie beschossen dafür das ferromagnetische Material BaFeO3 (BFO) mit kurzen Laserpulsen, welche einen kurzzeitigen Phasenübergang im Material bewirken. Das ermöglichte es, ansonsten stabile magnetische Regionen sehr lokal umzuschalten. Dies konnten sie mit ultrakurzen Röntgenpulsen an der Femtospex-Anlage nachweisen. Dieser Effekt könnte einen neuen Weg eröffnen, um Daten zu speichern. Die Ergebnisse sind nun in Phys. Rev. Letters publiziert.

Eine internationale Kooperation hat nun einen völlig neuen Ansatz vorgestellt, um die Energiebarriere in einem magnetischen Material zu überwinden. Sie erniedrigen die Barriere für die magnetische Manipulation, indem sie einen Phasenübergang im Material hervorrufen, vom isolierenden zum metallischen Zustand. Das Team, das von Prof. Hiroki Wadati von der Universität Tokio geleitet wird, hat das Material BaFeO3 (BFO) mit ultrakurzen Röntgenpulsen am Femtospex-Messplatz der Photonenquelle BESSY II des HZB untersucht. BFO ist ein ferromagnetischer Isolator mit stabiler magnetischer Ordnung. Wenn man das Material aber mit Laserpulsen oberhalb einer bestimmten Schwellenleistung beschießt, lässt sich dessen magnetische Ordnung auf einmal leicht manipulieren.

Ursache ist ein lokaler Phasenübergang

Die Forscher konnten den Schwellenwert für das magnetische Umschalten ermitteln und zeigen, dass sich dabei ein Übergangszustand im Material bildet: Kurzfristig wird der Isolator BFO metallisch. Anders als in üblichen magnetischen Materialien, wo Laser-Anregung einen quasi-metallischen Zustand nur für weniger als ein Billionstel einer Sekunde herbeiführt, stabilisiert sich in BFO der metallische Zustand selbst. Er bleibt dadurch etwa tausendmal länger erhalten und besteht damit lange genug, um in dieser Zeit z.B. Bits mit einem kurzen Magnetfeldpuls zu schreiben. Dadurch ist der Effekt für technische Anwendungen interessant. 

Ultraschneller Prozess am Femtospex-Messplatz beobachtet

Die Ergebnisse, die nun in Phys. Rev. Letters publiziert sind, zeigen einen neuen Weg auf, um Daten zu manipulieren. Solch ein umfassendes Bild von ultraschnellen Prozessen in einem Material zu gewinnen war möglich, weil der Femtospex-Messplatz an BESSY II des HZB, es erlaubt, magnetische und spektroskopische Informationen in ein und demselben Experiment zu gewinnen.

Zur Publikation: Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO3 Thin Films. T. Tsuyama, S. Chakraverty, S. Macke, N. Pontius, C. Schüßler-Langeheine, H. Y. Hwang, Y. Tokura, and H. Wadati
Phys. Rev. Lett. 116, 256402

doi: 10.1103/PhysRevLett.116.256402

red/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.