Topologische Isolatoren: Neuer Phasenübergang entdeckt

Der Bismut-Anteil nimmt von 0% (links) auf 2,2% (rechts) zu. Dadurch entsteht eine so genannte Bandl&uuml;cke in den Energieniveaus der Elektronen, zeigen die Messungen an BESSY II. </p>
<p>

Der Bismut-Anteil nimmt von 0% (links) auf 2,2% (rechts) zu. Dadurch entsteht eine so genannte Bandlücke in den Energieniveaus der Elektronen, zeigen die Messungen an BESSY II.

© HZB

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen und spannenden Materialklasse zählen auch Halbleiter aus Blei, Zinn und Selen, die zusätzlich mit winzigen Mengen Bismut versetzt sind. Das HZB-Team untersuchte einkristalline Schichten mit dieser Zusammensetzung und variierte dabei die Dotierung mit dem Element Bismut. Bei einer Dotierung mit 1 bis 2 Prozent Bismut konnten sie einen neuartigen topologischen Phasenübergang beobachten. Die Proben wechseln zu einer bestimmten topologischen Phase, die zusätzlich die Eigenschaft der Ferroelektrizität besitzt. Das bedeutet, dass ein äußeres elektrisches Feld das Kristallgitter verformt, während umgekehrt mechanischer Druck auf den Kristall elektrische Felder erzeugt.

Dieser Effekt ist für Anwendungen interessant. Solche ferroelektrischen Phasenwechselmaterialien werden beispielsweise in DVDs und Flash-Speichern verwendet. Dort verschiebt eine angelegte elektrische Spannung Atome im Kristallgitter, was aus einem Isolator ein Metall macht.

„Die Dotierung mit Bismut, die wir in der PbSnSe-Schicht untersucht haben, wirkt offenbar als Störung. Bismut ist dafür bekannt, dass seine Elektronenzahl nicht gut zu einer Kristallstruktur wie der von PbSnSe passt, so dass dieser faszinierende Phasenübergang auftritt“, erklärt Dr. Jaime Sánchez-Barriga, der für das Projekt zuständige Forscher.

Nach detaillierten Auswertungen der Messungen blieb nur eine Schlussfolgerung übrig: die Dotierung mit Bismut führt offenbar zu einer ferroelektrischen Verzerrung des Kristallgitters, die auch die erlaubten Energieniveaus der Elektronen ändert. "Die Messergebnisse haben uns über mehrere Experimentierreihen Rätsel aufgegeben, bis sich die Ergebnisse schließlich an einem ganz neuen Satz von Proben perfekt reproduzieren ließen", fügt Sánchez-Barriga hinzu.

"Ferroelektrische Phasen könnten hier zu Anwendungen führen, an die bislang nicht zu denken war. Verlustfreie elektrische Leitung in topologischen Materialien könnte sich nach Belieben an- und ausschalten lassen, durch Spannungspulse oder auch mechanische Spannungen", erklärt Prof. Oliver Rader, der am HZB die Abteilung Materialien für grüne Spintronik leitet.

Publication in Nature communications (2017): Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
Partha S. Mandal, Gunther Springholz, Valentine V. Volobuev, Ondrei Caha, Andrei Varykhalov, Evangelos Golias, Günther Bauer, Oliver Rader, Jaime Sánchez-Barriga

doi: 10.1038/s41467-017-01204-0

Hinweis: Die Untersuchungen wurden in enger Zusammenarbeit mit Forschern der Johannes-Kepler-Universität Linz durchgeführt, die auch die Proben hergestellt haben. Partha S. Mandal, der seine Doktorarbeit über die Messungen schreibt, wurde vom Helmholtz Virtual Institute "New States of Matter and their Excitations" finanziert.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.