Das HZB beteiligt sich am neuen Helmholtz-Austauschprogramm mit China
Das Helmholtz-Büro Peking (Foto) fördert die Kooperation zwischen den Wissenschaftlerinnen und Wissenschaftlern der 18 Helmholtz-Zentren und ihren chinesischen Partnern.
© Helmholtz-Gemeinschaft
Die Helmholtz-Gemeinschaft und das Büro des chinesischen Postdoc-Beirates (Office of China Postdoctoral Council - OCPC) etablieren ein gemeinsames Austauschprogramm für chinesische Postdoktoranden. Die jungen Wissenschaftlerinnen und Wissenschaftler werden an acht Helmholtz-Zentren für zwei Jahre forschen und anschließend nach China zurückkehren. Auch das HZB beteiligt sich am Austauschprogramm, das von 2017 bis 2021 läuft.
Zwei chinesische Postdocs arbeiten seit Kurzem am HZB und werden mit einem Stipendium aus dem Programm gefördert: Dr. Junming Li forscht in der Nachwuchsgruppe „Materialien und Grenzflächen für stabile Perowskit-Solarzellen“. Sie wird von Dr. Antonio Abate geleitet, der auch Gastprofessor an der Fuzhou Universität in China ist. Der zweite Postdoc, Hongtao Yu, arbeitet in der Gruppe von Prof. Dr. Yan Lu, Expertin für Kolloid-Chemie am HZB. Anfang 2018 werden zwei weitere Postdocs im Rahmen des Austauschprogramms an das HZB kommen.
Die Postdocs bekommen für ihren Forschungsaufenthalt ein Stipendium, das jeweils zur Hälfte von der chinesischen OCPC und dem Gastzentrum finanziert wird. Insgesamt 50 Nachwuchsforschende erhalten in diesem Jahr die Möglichkeit, an den Helmholtz-Zentren unter der Leitung erfahrender Wissenschaftlerinnen und Wissenschaftlern zu forschen und wertvolle internationale Erfahrungen zu sammeln.
Das Austauschprogramm zwischen der Helmholtz-Gemeinschaft und OCPC ist die erste Maßnahme in dieser Größenordnung. Bislang erhalten nur sehr wenige junge OCPC-Postdoktoranden aus China die Möglichkeit, zum Forschen ins Ausland zu gehen. Das Postdoc-Austauschprogramm soll eine Basis für eine langfristige und nachhaltig angelegte Kooperation beider Länder in der Wissenschaft und Bildung schaffen.
Beteiligte Helmholtz-Zentren:
FZJ (Koordination), DESY, HZB, HZI, GFZ, GSI, KIT und HMGU
Beteiligt ist darüber hinaus das Helmholtz-Büro in Peking.
(sz)
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14743;sprache=de 
- Link kopieren
-
Gute Aussichten für Zinn-Perowskit-Solarzellen
Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
-
Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
-
Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.