Perowskit-Solarzellen: Es muss gar nicht perfekt sein

Vereinfachter Querschnitt durch eine Perowskit-Solarzelle: Die Perowskit-Schicht bedeckt nicht die gesamte Fläche, sondern weist „Löcher“ auf. Allerdings bildet sich dort eine Schutzschicht, die einen Kurzschluss verhindert, zeigte das Team um Marcus Bär.

Vereinfachter Querschnitt durch eine Perowskit-Solarzelle: Die Perowskit-Schicht bedeckt nicht die gesamte Fläche, sondern weist „Löcher“ auf. Allerdings bildet sich dort eine Schutzschicht, die einen Kurzschluss verhindert, zeigte das Team um Marcus Bär. © HZB

Untersuchungen an BESSY II zeigen, warum selbst „löchrige“ Perowskit-Filme gut funktionieren

Metallorganische Perowskit-Schichten für Solarzellen werden häufig durch Rotationsschleudern  auf industrierelevante Substrate aufgetragen. Die aufgeschleuderten Perowskit-Schichten weisen in der Regel zahlreiche „Löcher“ auf, erzielen aber dennoch erstaunlich hohe Wirkungsgrade. Warum solche Löcher kaum zu Kurzschlüssen und Ladungsträgerrekombination führen, hat nun ein HZB-Team um Prof. Marcus Bär in Zusammenarbeit mit der Gruppe von Prof. Henry Snaith (Universität Oxford) an BESSY II herausgefunden.

Die metallorganischen Perowskite zeigten anfänglich Wirkungsgrade von wenigen Prozent (2,2 Prozent in 2006). Aber das änderte sich rasch: Inzwischen liegt der Rekordwert bei deutlich über 22 Prozent. Eine solche Steigerung hatte bei den derzeit kommerziell dominierenden Silizium-Solarzellen mehr als 50 Jahre gedauert. Dünnschichten aus metallorganischen Perowskiten sind preisgünstig und sie lassen sich großflächig herstellen, etwa durch Aufschleudern einer Perowskit-Lösung und anschließendem Ausheizen. Dabei verdampft das Lösungsmittel und das Material kristallisiert aus. Das macht diese Technologie sehr attraktiv.

"Löcher" im Perowskit-Film

Allerdings entsteht beim Aufschleudern auf kompakte Substrate in der Regel keine perfekte ebenmäßige Dünnschicht, sondern ein Perowskit-Film mit zahlreichen „Löchern“. Auch die Proben aus der Gruppe des Perowskit-Pioniers Henry Snaith weisen diese Löcher auf. Das Problem dabei: Diese Löcher könnten zu Kurzschlüssen in der Solarzelle führen, indem die angrenzenden Schichten der Solarzelle in Kontakt kommen. Dies müsste eigentlich den Wirkungsgrad sehr deutlich reduzieren. Diesen Effekt konnten die Forscher allerdings nicht beobachten.

Schutzschicht bildet sich von selbst

Nun haben Marcus Bär und seine Gruppe zusammen mit der Spectro-Microscopy Gruppe des Fritz-Haber-Instituts die Proben von Henry Snaith gründlich unter die Lupe genommen. Mit Hilfe von Rasterelektronenmikroskopie haben sie die Oberfläche morphologisch kartiert. An den Stellen mit Löchern analysierten sie anschließend ortsaufgelöst mit spektromikroskopischen Methoden an BESSY II die chemische Zusammensetzung. „Wir konnten zeigen, dass selbst in den Löchern das Substrat nicht wirklich unbedeckt ist, sondern sich dort quasi als Ergebnis der Abscheidung und Kristallisation eine dünne Schicht ausbildet, die offensichtlich Kurzschlüsse verhindert“, erklärt Doktorandin Claudia Hartmann.

... und verhindert Kurzschlüsse

Dabei konnten sie auch ermitteln, dass die Energiebarriere vergleichsweise hoch ist, die die Ladungsträger überwinden müssten, um bei einem direkten Aufeinandertreffen der Kontaktschichten miteinander zu rekombinieren. „Die Elektronen-Transportschicht TiO2 und das Transportmaterial für positive Ladungsträger Spiro-MeOTAD kommen eben nicht direkt in Kontakt. Außerdem ist die Rekombinationsbarriere zwischen den Kontaktschichten ausreichend groß, so dass trotz der vielen Löcher in der Perowskit-Dünnschicht die Verluste in diesen Solarzellen gering sind“, sagt Marcus Bär.

 

Die Ergebnisse sind publiziert in Advanced Materials Interfaces (2018): Spatially-resolved insight into the chemical and electronic structure of solution processed perovskites – why to (not) worry about pin-holes, C. Hartmann, G. Sadoughi, R. Félix, E. Handick, H. W. Klemm, G. Peschel, E. Madej, A. B. Fuhrich, X. Liao, S. Raoux, D. Abou-Ras, D. Wargulski, Th. Schmidt, R.G. Wilks,, H. Snaith, and M. Bär

DOI: 10.1002/admi.201701420

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.