HZB expert contributes to Leibniz platform GraFOx

The platform "GraFOx" of the Leibniz Association bundles the activities and competences of Berlin research institutes and universities in the field of oxide research for electronic applications. Now Prof. Dr. Catherine Dubourdieu has been involved as an Associate Partner. The internationally renowned expert heads the Institute "Functional Oxides for Energy-Efficient Information Technology" at the Helmholtz-Zentrum Berlin.

The Leibniz ScienceCampus GraFOx offers a platform for the exchange of knowledge and the coordination of activities with the aim of gaining fundamental understanding on key issues and of developing novel applications for oxides. GraFOx stands for "Growth and Fundamentals of Oxides (GraFOx) for electronic applications". Catherine Dubourdieu will contribute her many years of experience with multifunctional perovskites including their integration on semiconductors.

 More Information on GraFOx: http://grafox.pdi-berlin.de/


You might also be interested in

  • NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Der 2. Netzwerktag der Allianz BIPV findet statt am

    10:00 - ca. 16:00 Uhr

    Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • New software based on Artificial Intelligence helps to interpret complex data
    Science Highlight
    New software based on Artificial Intelligence helps to interpret complex data
    Experimental data is often not only highly dimensional, but also noisy and full of artefacts. This makes it difficult to interpret the data. Now a team at HZB has designed software that uses self-learning neural networks to compress the data in a smart way and reconstruct a low-noise version in the next step. This enables to recognise correlations that would otherwise not be discernible. The software has now been successfully used in photon diagnostics at the FLASH free electron laser at DESY. But it is suitable for very different applications in science.