Shutdown BESSY II: work has started
The experimental Hall of BESSY II. HZB / D.Butenschön
As of 30 July 2018, BESSY II will be down for several weeks. In the summer shutdown, important components in the storage ring tunnel will be replaced and overhauled. The first conversion work for the BESSY VSR project also begins. Upgrading BESSY II into a variable-pulse-length storage ring (BESSY-VSR) will provide unique experimental conditions for researchers worldwide. The shutdown lasts until 30 September 2018, and user operation will recommence on 30 October 2018.
While the ring is down, the HZB employees will be completely modifying the multipole wavelength shifter, the EDDI beamline and the radiation protection hutches. This space will be needed for installing the cold supply for the superconducting cavities in the storage ring. These are key components in the creation of BESSY VSR. Keeping them cold, however, requires an elaborate infrastructure, which is to be built up in the experimental hall over the next two years.
There is even more that has to be done during this shutdown: colleagues from the Institute for Accelerator Physics are constructing a diagnostics beamline for BESSY VSR in the vicinity of the EMIL hutch. In addition, the two wavelength shifters will be revised and further components (Landau cavities and a CPMU17) will be installed for the EMIL laboratory. Plus, a laboratory for electrochemical experiments on solid-liquid boundary interfaces (BEIChem) is to be built at BESSY II.
You can take a detailed look at everything that will be going on during the shutdown in the HZB Science Blog
(sz)
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14869;sprache=en
- Copy link
-
Alternating currents for alternative computing with magnets
A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
-
BESSY II: Heterostructures for Spintronics
Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
-
Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.