Einblick in Verlustprozesse in Perowskit-Solarzellen ermöglicht Verbesserung der Effizienz

Die untersuchte Perowskit-Zelle hat bereits eine Fl&auml;che von 1 cm<sup>2</sup>.

Die untersuchte Perowskit-Zelle hat bereits eine Fläche von 1 cm2. © Uni Potsdam

<p class="MsoPlainText">Mit zus&auml;tzlichen Beschichtungen zwischen dem Perowskit-Halbleiter und den Loch- und Elektronentransportschichten (rote und blaue Linien) konnte das Team der Uni Potsdam den Wirkungsgrad weiter steigern.

Mit zusätzlichen Beschichtungen zwischen dem Perowskit-Halbleiter und den Loch- und Elektronentransportschichten (rote und blaue Linien) konnte das Team der Uni Potsdam den Wirkungsgrad weiter steigern. © Uni Potsdam

In Perowskit-Solarzellen gehen Ladungsträger vor allem durch Rekombination an Defekten an den Grenzflächen verloren. Rekombination an Defekten im Inneren der Perowskit-Schicht begrenzt  dagegen die Leistungsfähigkeit der Zellen gegenwärtig nicht. Diese interessante Einsicht konnten Teams der Universität Potsdam und am Helmholtz-Zentrum Berlin (HZB)  nun mit quantitativ äußerst genauen Photolumineszenz-Messungen an 1 cm2 großen Perowskit-Absorberschichten gewinnen. Ihre Ergebnisse tragen zur gezielten  Verbesserung von Perowskit-Solarzellen bei und sind nun in Nature Energy publiziert.

Selbst Solarzellen aus einem perfekten Wundermaterial würden niemals hundert Prozent des Sonnenlichts in elektrische Energie umwandeln. Denn die theoretisch maximal erreichbare Leistung ist begrenzt durch die Lage der  Energiebänder der Elektronen und durch die nicht vermeidbare Abstrahlung von Photonen (thermodynamische oder Shockley-Queisser-Grenze). Bei der Bandlücke von Silizium liegt diese Grenze bei 33 Prozent. Doch selbst dieser Wert wird in Wirklichkeit nicht erreicht. Denn Defekte unterschiedlicher Art sorgen dafür, dass ein Teil der durch Sonnenlicht freigesetzten Ladungsträger wieder verloren geht. Um sich dem Maximalwert anzunähern, gilt es daher die verschiedenen Defekte in Solarzellen zu untersuchen und zu ermitteln, welche Defekte auf welche Weise zu Verlusten führen. 

Die neuen Stars: Metallorganische Perowskite

Als besonders spannende, neue Materialklasse für Solarzellen gelten metallorganische Perowskit-Absorberschichten – in nur zehn Jahren ließ sich ihr Wirkungsgrad von drei Prozent auf über zwanzig Prozent erhöhen, eine rasante Erfolgsgeschichte. Nun ist es einem Team um Prof. Dr. Dieter Neher, Universität Potsdam und Dr. Thomas Unold, HZB, gelungen, die entscheidenden Verlustprozesse in Perowskit-Solarzellen zu identifizieren und damit den Wirkungsgrad dieser Zellen deutlich zu verbessern.

An bestimmten Defekten oder Fehlstellen im Kristallgitter der Perowskit-Schicht können Ladungsträger, also Elektronen oder „Löcher“, die gerade durch Sonnenlicht freigesetzt wurden, wieder rekombinieren und so verlorengehen. Ob diese Defekte aber bevorzugt im Inneren der Perowskit-Schicht sitzen oder eher an der Grenzfläche zwischen Perowskit- und Transportschicht, das war bislang unklar.

Verluste im Detail analysiert

Um dies herauszufinden, nutzten die Kooperationspartner die Methode der Photolumineszenz mit hoher Präzision und Orts- und Zeitauflösung. Mit Laserlicht regten sie die quadratzentimetergroße Perowskit-Schicht an und erfassten, wo und wann das Material als Antwort auf die Anregung wiederum Licht abstrahlte. „Diese Messmethode ist bei uns so präzise, dass wir die Anzahl der ausgestrahlten Photonen genau angeben können“, erklärt Unold. Und nicht nur das, auch die Energie der abgestrahlten Photonen wurde mit einer hyperspektralen CCD-Kamera genau erfasst und analysiert.

„Wir konnten so an jedem Punkt der Zelle die Verluste ausrechnen und dabei feststellen, dass die schädlichsten Defekte sich an den Grenzflächen zwischen der Perowskit-Absorberschicht und den Ladungstransportschichten befinden“, berichtet Unold. Dies ist eine wichtige Information, um Perowskit-Solarzellen weiter zu verbessern, etwa durch Zwischenschichten, die sich günstig auswirken oder durch veränderte Herstellungsmethoden.

Steigerung des Wirkungsgrads gelungen

Mithilfe dieser Erkenntnisse ist es der Gruppe um Prof. Dr. Dieter Neher und Dr. Martin Stolterfoht an der Uni Potsdam gelungen, die Grenzflächenrekombination zu verringern und dadurch den Wirkungsgrad der 1 cm2 Perowskit-Solarzellen auf mehr als 20 % zu erhöhen.

Zur Publikation in Nature Energy (2018):Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells; Martin Stolterfoht, Christian M. Wolff, José A. Márquez, Shanshan Zhang,Charles J. Hages,Daniel Rothhardt, Steve Albrecht, Paul L. Burn, Paul Meredith, Thomas Unold and Dieter Neher
Doi:10.1038/s41560-018-0219-8

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.