Collaboration between HZB and the University of Freiburg

The theory group with Joe Dzubiella.

The theory group with Joe Dzubiella. © HZB

Through a Joint Research Group entitled “Simulation of Energy Materials“ Prof. Joachim Dzubiella of the Albert-Ludwigs-Universität, Freiburg will be able to continue his collaboration with the HZB. The theoretical physicist headed the “Theory and Simulation“ group at the HZB until recently and worked closely together with colleagues conducting experimental research. The new research group will concentrate on electrochemical energy storage and solar fuels.

From 2010 until spring 2018, Joachim Dzubiella was a scientist at HZB carrying on research and building up his theory group. He appreciated the short paths to experimentalists and worked closely with them. In 2015 he received a Consolidator Grant from the European Research Council that enabled him to further expand his group.

The physicist accepted a W3 professorship in Applied Theoretical Physics at the University of Freiburg In April 2018. But the collaboration with the HZB will continue. This has been made possible now through a Joint Research Group entitled "Simulation of Energy Materials" funded by the Helmholtz-Zentrum Berlin and the University of Freiburg.

“In the field of solar fuels, there is great interest in more clearly understanding the processes taking place at the catalyst layers that facilitate the splitting of water“, explains Dzubiella. There are also numerous aspects of electrochemical energy storage that can be analysed significantly better through modelling. The Joint Research Group currently consists of seven researchers. The focus is on what happens at the interfaces between liquid and solid phases, which are simulated by theorists with computer models in order to track down the driving forces.

The group members from Freiburg and Berlin will exchange ideas with Skype meetings, visits, and retreats in the countryside. Initial funding has been secured for five years.

More Information: http://helmholtz-berlin.de/forschung/oe/ee/simulation/

arö

  • Copy link

You might also be interested in

  • Sodium-ion batteries: New storage mechanism for cathode materials
    Science Highlight
    18.07.2025
    Sodium-ion batteries: New storage mechanism for cathode materials
    Li-ion and Na-ion batteries operate through a process called intercalation, where ions are stored and exchanged between two chemically different electrodes. In contrast, co-intercalation, a process in which both ions and solvent molecules are stored simultaneously, has traditionally been considered undesirable due to its tendency to cause rapid battery failure. Against this traditional view, an international research team led by Philipp Adelhelm has now demonstrated that co-intercalation can be a reversible and fast process for cathode materials in Na-ion batteries. The approach of jointly storing ions and solvents in cathode materials provides a new handle for the designing batteries with high efficiency and fast charging capabilities. The results are published in Nature Materials.
  • 10 million euros in funding for UNITE – Startup Factory Berlin-Brandenburg
    News
    16.07.2025
    10 million euros in funding for UNITE – Startup Factory Berlin-Brandenburg
    UNITE – Startup Factory Berlin-Brandenburg has been recognised by the Federal Ministry for Economic Affairs and Energy as one of ten nationwide flagship projects for science-based start-ups. UNITE is to be established as a central transfer platform for technology-driven spin-offs from science and industry in the capital region. The Helmholtz Centre Berlin will also benefit from this.

  • Hydrogen storage in MXene: It all depends on diffusion processes
    Science Highlight
    23.06.2025
    Hydrogen storage in MXene: It all depends on diffusion processes
    Two-dimensional (2D) materials such as MXene are of great interest for hydrogen storage. An expert from HZB has investigated the diffusion of hydrogen in MXene using density functional theory. This modelling provides valuable insights into the key diffusion mechanisms and hydrogen's interaction with Ti₃C₂ MXene, offering a solid foundation for further experimental research.