Andrea Denker ist Professorin für „Beschleunigerphysik für die Medizin“

Prof. Dr. Andrea Denker leitet am HZB die Abteilung "Protonentherapie".

Prof. Dr. Andrea Denker leitet am HZB die Abteilung "Protonentherapie". © HZB/ M. Setzpfandt

Die Beuth Hochschule für Technik Berlin und das Helmholtz-Zentrum Berlin (HZB) haben Prof. Dr. Andrea Denker zum 1. Oktober 2018 auf die gemeinsame Professur „Beschleunigerphysik für die Medizin“ berufen. Die Physikerin leitet seit 2006 die Abteilung „Protonentherapie“ am HZB, die den Beschleuniger für die Augentumortherapie betreibt. Die Therapie, angeboten in Kooperation von der Charité – Universitätsmedizin Berlin und dem HZB, ist in Deutschland einzigartig.

Im Rahmen ihrer Professur übernimmt Andrea Denker Lehrveranstaltungen im Studiengang „Physikalische Technik – Medizinphysik“ der Beuth Hochschule. Im aktuellen Wintersemester bietet sie die Vorlesung „Atom- und Kernphysik“ für Bachelor-Studierende an.

Bereits vor ihrer Berufung engagierte sich Andrea Denker als Lehrbeauftragte an der Hochschule. „Diese Aufgabe macht mir viel Spaß und der Kontakt zu den Studierenden ist für mich und mein Team am HZB sehr bereichernd“, sagt Denker. Durch die Berufung entsteht jetzt eine noch engere Anbindung an die Hochschule. „Wir freuen uns schon auf viele interessante Abschlussarbeiten, die am Protonenbeschleuniger des HZB entstehen werden.“

Andrea Denker studierte und promovierte in Physik an der Universität Stuttgart. Anschließend arbeitete sie am CSNSM (Centre de Sciences Nucléaires et de Sciences de la Matière) in Orsay, Frankreich. 1995 begann Andrea Denker als wissenschaftliche Mitarbeiterin am Ionen-Beschleuniger ISL. Dabei berechnete und entwickelte sie unter anderem die Strahlparameter für die Augentumortherapie, die vor 20 Jahren an den Start ging.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.