Marcus Bär accepts W2 professorship for X-ray spectroscopy in Erlangen-Nuremberg

Marcus Bär, here in EMIL lab at HZB, has accepted a professorship at FAU in South-Germany.

Marcus Bär, here in EMIL lab at HZB, has accepted a professorship at FAU in South-Germany. © Phil Dera

Prof. Marcus Bär has accepted a professorship for X-ray spectroscopy at the Friedrich-Alexander Universität Erlangen-Nürnberg (FAU). Bär heads the Department of Interface Design at Helmholtz-Zentrum Berlin (HZB). The new W2 professorship was established in cooperation with HZB and Forschungszentrum Jülich in order to strengthen the Helmholtz-Institute Erlangen-Nürnberg für Renewable Energy (HI ERN). In the future, Bär will also be working on HI ERN research topics at HZB, thereby contributing to the intensification of cooperation.

Marcus Bär studied physics at the University of Potsdam and Environmental Engineering/Renewable Energies at the University of Applied Sciences (FHTW) in Berlin. In 2003 he earned his doctorate in electrical engineering in the field of solar energy research at the Hahn-Meitner-Institut Berlin and at the TU Berlin. Thereafter, Prof. Bär was Emmy-Noether Fellow at the Department of Chemistry of the University of Nevada in Las Vegas/USA. He was promoted to an Adjunct Assistant Research Professor at this department in 2006 and to an Assistant Research Professor in 2007. In 2009 he returned to Berlin and became head of the Helmholtz Young Investigator Group "Improving thin-film solar cells by deliberate interface tailoring" at the HZB. Two years later he was appointed professor for photovoltaics at the BTU Cottbus-Senftenberg.

Prof. Bär's research interests lie in the field of X-ray spectroscopic investigation of the chemical and electronic structure of energy-conversion materials and structures with a focus on thin-film solar cells. In the future, Prof. Bär wants to establish the infrastructure for in-situ and operando investigations of (photo/electro)catalytic materials, which are also interesting to the HI ERN researchers.

red.

  • Copy link

You might also be interested in

  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.