Laser-driven Spin Dynamics in Ferrimagnets: How does the Angular Momentum flow?

Experiments at the femtoslicing facility of BESSY II revealed the ultrafast angular momentum flow from Gd and Fe spins to the lattice via orbital moment during demagnetization of GdFe alloy.

Experiments at the femtoslicing facility of BESSY II revealed the ultrafast angular momentum flow from Gd and Fe spins to the lattice via orbital moment during demagnetization of GdFe alloy. © R. Abrudan/HZB

When exposed to intense laser pulses, the magnetization of a material can be manipulated very fast. Fundamentally, magnetization is connected to the angular momentum of the electrons in the material. A team of researchers led by scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) has now been able to follow the flow of angular momentum during ultrafast optical demagnetization in a ferrimagnetic iron-gadolinium alloy at the femtoslicing facility of BESSY II. Their results are helpful to understand the fundamental processes and their speed limits. The study is published in Physical Review Letters.

Illumination with an ultrashort laser pulse is a means to demagnetize a material very fast - for the prototypical ferromagnets iron, cobalt and nickel, for example, the magnetization is extinguished within about one picosecond (10-12 s) after the laser pulse has hit the material. This has led to the question, through which channels the angular momentum associated with the magnetization is transferred to other reservoirs during the short time available. Researchers from MBI in Berlin together with scientists from Helmholtz Zentrum Berlin and Nihon University, Japan, have now been able to follow this flow of angular momentum in detail for an iron-gadolinium alloy. In this ferrimagnetic material, adjacent iron (Fe) and gadolinium (Gd) atoms have magnetization with opposite direction.

The researchers have used ultrashort x-ray pulses at the femtoslicing facility of BESSY II to monitor the absorption of circularly polarized x-rays by the Fe and Gd atoms as a function of time after previous laser excitation. This approach is unique in that it allows tracking the magnetic moment during the ultrafast demagnetization at both types of atoms individually. Even more, it is possible to distinguish angular momentum stored in the orbital motion vs. in the spin of the electrons when the respective absorption spectra are analyzed.

W With this detailed “x-ray vision”, the scientists found that during demagnetization process of GdFe alloy the angular momentum flows from Gd and Fe spins to the orbital moments and eventually to the lattice. This means that the surrounding lattice acts as 100 % sink of angular momentum for the demagnetizing Fe and Gd spins on a sub-picosecond timescale.

Given that short laser pulses can also be used to permanently switch magnetization and thus write bits for magnetic data recording, the insight in the dynamics of these fundamental mechanisms is of relevance to develop new approaches to write data to mass data storage media much faster than possible today.

 

 

 

MBI/HZB


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.