Laser-driven Spin Dynamics in Ferrimagnets: How does the Angular Momentum flow?

Experiments at the femtoslicing facility of BESSY II revealed the ultrafast angular momentum flow from Gd and Fe spins to the lattice via orbital moment during demagnetization of GdFe alloy.

Experiments at the femtoslicing facility of BESSY II revealed the ultrafast angular momentum flow from Gd and Fe spins to the lattice via orbital moment during demagnetization of GdFe alloy. © R. Abrudan/HZB

When exposed to intense laser pulses, the magnetization of a material can be manipulated very fast. Fundamentally, magnetization is connected to the angular momentum of the electrons in the material. A team of researchers led by scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) has now been able to follow the flow of angular momentum during ultrafast optical demagnetization in a ferrimagnetic iron-gadolinium alloy at the femtoslicing facility of BESSY II. Their results are helpful to understand the fundamental processes and their speed limits. The study is published in Physical Review Letters.

Illumination with an ultrashort laser pulse is a means to demagnetize a material very fast - for the prototypical ferromagnets iron, cobalt and nickel, for example, the magnetization is extinguished within about one picosecond (10-12 s) after the laser pulse has hit the material. This has led to the question, through which channels the angular momentum associated with the magnetization is transferred to other reservoirs during the short time available. Researchers from MBI in Berlin together with scientists from Helmholtz Zentrum Berlin and Nihon University, Japan, have now been able to follow this flow of angular momentum in detail for an iron-gadolinium alloy. In this ferrimagnetic material, adjacent iron (Fe) and gadolinium (Gd) atoms have magnetization with opposite direction.

The researchers have used ultrashort x-ray pulses at the femtoslicing facility of BESSY II to monitor the absorption of circularly polarized x-rays by the Fe and Gd atoms as a function of time after previous laser excitation. This approach is unique in that it allows tracking the magnetic moment during the ultrafast demagnetization at both types of atoms individually. Even more, it is possible to distinguish angular momentum stored in the orbital motion vs. in the spin of the electrons when the respective absorption spectra are analyzed.

W With this detailed “x-ray vision”, the scientists found that during demagnetization process of GdFe alloy the angular momentum flows from Gd and Fe spins to the orbital moments and eventually to the lattice. This means that the surrounding lattice acts as 100 % sink of angular momentum for the demagnetizing Fe and Gd spins on a sub-picosecond timescale.

Given that short laser pulses can also be used to permanently switch magnetization and thus write bits for magnetic data recording, the insight in the dynamics of these fundamental mechanisms is of relevance to develop new approaches to write data to mass data storage media much faster than possible today.

 

 

 

MBI/HZB

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.