Memorandum of Understanding signed between University of Jena and HZB

From left to right: Prof. Bernd Rech of HZB, Prof. Ulrich S. Schubert of CEEC Jena, and the President of Jena University, Prof. Walter Rosenthal, seal the cooperation.

From left to right: Prof. Bernd Rech of HZB, Prof. Ulrich S. Schubert of CEEC Jena, and the President of Jena University, Prof. Walter Rosenthal, seal the cooperation. © Jürgen Scheere/FSU

Friedrich Schiller University Jena

Friedrich Schiller University Jena © Universität Jena

Thuringa’s minister of science gives the green light for the cooperation on research into new energy stores: Friedrich Schiller University Jena and Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) today have laid the foundation for close collaboration with the signing of a Memorandum of Understanding. The Centre for Energy and Environmental Chemistry Jena (CEEC Jena) and HZB want to join forces to research novel energy storage materials and systems in the future.

Storing energy is one of the key technologies of the 21st century, the Thüringen Minister of Science, Wolfgang Tiefensee, said at the signing. “The cooperation between the CEEC and HZB will give a new tailwind to research into novel energy stores. From the State’s perspective, it is worth working towards structural cooperation between the two institutions.”

“This cooperation allows not only the bundling of resources, but above all brings smart minds together into a project to share their knowledge and thus jointly achieve advancements in knowledge that will benefit everyone. The outstanding cooperative projects with non-university research institutions are a hallmark of Jena, and contribute significantly to the success of the university and the location,” University President, Prof. Walter Rosenthal, said after the signing of the agreement.

“The cooperation with Helmholtz-Zentrum Berlin is to be expanded further and, if it is a success, established permanently,” declares Prof. Ulrich S. Schubert, Director of the CEEC Jena.

“To start with, it is planned that scientists at the Berlin and Jena institutions will jointly research polymer-based energy stores,” explains Prof. Bernd Rech, Scientific Director of Helmholtz-Zentrum Berlin für Materialien und Energie. HZB’s unique characterisation techniques will thus be used to investigate the novel batteries from Jena in detail and subsequently refine them. A specific upcoming goal is to establish a Joint Lab where the synergies can be used to maximum potential. 

Funding is provided by the participating institutes. Additionally, Thüringen’s Ministry of Science has promised to provide the Friedrich Schiller University Jena with funding for personnel and material investments.

The signing of the “Memorandum of Understanding” on the cooperation was pronounced today in the presence of the Thüringen Minister of Economic Affairs, Science and Digital Society, Wolfgang Tiefensee; the President of Friedrich Schiller University Jena, Prof. Walter Rosenthal; and the Scientific Director of Helmholtz-Zentrum Berlin für Materialien und Energie, Prof. Bernd Rech.

(Uni Jena)


You might also be interested in

  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    26.02.2024
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While their ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.