HZB & IKZ bundle their competencies In crystalline energy and quantum materials

The participants after signing the cooperation agreement between IKZ and HZB in corona-conform distance: (from left to right) Dr. Andreas Popp (IKZ), Dr. Manuela Urban (FVB), Dr. Peter Gaal (IKZ), Prof. Dr. Catherine Dubourdieu (HZB), Prof. Dr. Thomas Schröder (IKZ), Prof. Dr. Bernd Rech (HZB), Thomas Frederking (HZB).

The participants after signing the cooperation agreement between IKZ and HZB in corona-conform distance: (from left to right) Dr. Andreas Popp (IKZ), Dr. Manuela Urban (FVB), Dr. Peter Gaal (IKZ), Prof. Dr. Catherine Dubourdieu (HZB), Prof. Dr. Thomas Schröder (IKZ), Prof. Dr. Bernd Rech (HZB), Thomas Frederking (HZB). © Sandra Fischer/HZB

On September 11, 2020, the Helmholtz-Zentrum Berlin (HZB) and the Leibniz-Institut für Kristallzüchtung (IKZ) signed a cooperation agreement to advance joint research on energy and quantum materials. As part of the cooperation, new types of X-ray optics for synchrotron radiation sources are also being developed.

IKZ and HZB share a long history of joint collaboration: IKZ scientists use the BESSY II radiation source from the HZB on a regular basis for their material science studies. In turn, the crystal growers of the IKZ develop and manufacture components that bring out the special properties of BESSY II.

"We are very pleased that we can strengthen our close cooperation with the cooperation agreement,” says Prof. Bernd Rech, scientific director at the HZB. “At BESSY II we offer a variety of x-ray analytical methods for the analysis of complex material systems. As part of our cooperation, we can use our complementary competencies specifically to jointly develop research areas in energy research and quantum technologies.”

Prof. Thomas Schröder, scientific director at the IKZ, also emphasizes the opportunities that the cooperation between the two research institutions allows: “The IKZ is very interested in initiating joint R&D projects on materials for photovoltaics and power electronics with the scientists of the HZB to maximize our impact in this research area.“ Since Prof. Schröder himself spent part of his career in synchrotron research, there is also a personal affinity towards materials and methods development for large-scale research facilities. “Today I am very happy that IKZ can start new R&D projects with BESSY II in order to support the synchrotron sources with our crystalline materials, for example through active and passive X-ray optics.”

Short description of IKZ:

The Leibniz-Institut für Kristallzüchtung in Berlin-Adlershof is an international competence center for science, technology, service and transfer in the field of crystalline materials. The research and development spectrum ranges from basic and applied research to pre-industrial research tasks. The IKZ develops innovations in crystalline materials through its expertise in plant engineering, numerical simulation and crystal growth to achieve crystalline materials of the highest quality with tailored properties. The unique selling point of the institute is the research on volume crystals. This work is accompanied by research and development on nanostructures and thin films as well as strong theoretical and experimental research into materials.

IKZ


You might also be interested in

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.