HZB beteiligt sich an DFG-Gruppe zu Materialwissenschaften in der Zahnmedizin

Künstliche und natürliche Grenzzonen an einem mit dentalen Biomaterialien restaurierten Zahn sind verschiedenen mechanischen (links: Belastungen durch Druck, Zug und Scherung) und biologischen Einflüssen (rechts: Anhaftung und Eindringen von Bakterien, andere Wechselwirkungen mit biologischen Medien) ausgesetzt.

Künstliche und natürliche Grenzzonen an einem mit dentalen Biomaterialien restaurierten Zahn sind verschiedenen mechanischen (links: Belastungen durch Druck, Zug und Scherung) und biologischen Einflüssen (rechts: Anhaftung und Eindringen von Bakterien, andere Wechselwirkungen mit biologischen Medien) ausgesetzt. © P. Zaslansky/Charité.

Zahnärztliche Füllungen oder Kronen sind großen Belastungen ausgesetzt. Mit Ansätzen aus Materialwissenschaften und Zahnmedizin wollen Forschende an der Charité – Universitätsmedizin Berlin und der Technischen Universität (TU) Berlin nun die eingesetzten Materialien untersuchen und beständiger machen. Die interdisziplinäre Forschungsgruppe „InterDent“, an der auch das Helmholtz-Zentrum Berlin (HZB) und das Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPI-KG) beteiligt sind, wird von der Deutschen Forschungsgemeinschaft (DFG) mit 2,1 Millionen Euro zunächst für drei Jahre gefördert. 

Mit dem Ziel, verbesserte Werkstoffe für die Zahnmedizin zu schaffen, werden die Wechselwirkungen verschiedener Materialien mit den umgebenden Geweben beleuchtet. In einem Teilprojekt soll die Vorhersage der Alterung harter Zahnbestandteile – der sogenannten Zahnhartsubstanz – in der Nähe von Zahnfüllungen in Abhängigkeit vom verwendeten Füllungsmaterial ermöglicht werden. Dazu werden die mikrostrukturellen und chemischen Eigenschaften des Dentins – also Zahnbeins –, die sich im Zuge der – als Sklerosierung bezeichneten – Verhärtung zunehmend verändern, zerstörungsfrei und mit hoher Empfindlichkeit und Auflösung untersucht. „Auf diese Weise wollen wir ein Modellsystem für die Dentinsklerose schaffen, das uns ein besseres Verständnis der Veränderungen von Struktur und Element-Zusammensetzung ermöglichen soll“, sagt Dr. Ioanna Mantouvalou vom HZB, die das Teilprojekt gemeinsam mit Dr. Paul Zaslansky leitet, dem Sprecher der Forschungsgruppe und Projektleiter am Institut für Zahn-, Mund- und Kieferheilkunde der Charité.

Charité /red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.