Neue Einblicke in die Struktur von organisch-anorganischen Hybrid-Perowskiten

Das Video zeigt die Veränderungen der Kristallstruktur zeigt. Grau: Pb, Braun: Br, Schwarz: C, Blau: N; Weiß: H © HZB

10.00 s

In der Photovoltaik haben organisch-anorganische Hybrid-Perowskite eine rasante Karriere gemacht. Doch viele Fragen zur kristallinen Struktur dieser überraschend komplexen Materialklasse sind ungeklärt. Nun hat ein Team am HZB mit einer vierdimensionalen Modellierung Strukturdaten von Methylammonium-Bleibromid (MAPbBr3) interpretiert und dabei inkommensurable Überstrukturen und Modulationen der vorherrschenden Struktur identifiziert. Die Studie ist im ACS Journal of Physical Chemistry Letters publiziert und wurde von den Herausgebern als Editor’s Choice ausgewählt.

Organisch-anorganische Hybrid-Perowskite werden seit rund zehn Jahren intensiv für den Einsatz in Solarzellen untersucht. Dünnschichten aus solchen Perowskiten sind preiswert und erreichen schon jetzt hohe Wirkungsgrade. Außerdem lassen sie sich perfekt mit gängigen Solarzellmaterialien wie Silizium zu Tandemzellen kombinieren. Anfang 2020 konnte ein HZB-Team mit einer Tandemzelle aus Perowskit und Silizium einen Weltrekordwirkungsgrad von 29,15 % erreichen.

Doch trotz intensivster Forschung ist es bislang auch bei den bekanntesten Perowskit-Verbindungen wie Methylammonium- und Formamidinium-Bleihalogenid nicht gelungen, die Kristallstrukturen mit ihren vielfältigen Modulationen und Überstrukturen in Abhängigkeit von der Temperatur genau aufzuklären.  

Nun hat ein Team am HZB Strukturdaten von Methylammonium-Bleibromid (MAPbBr3) mit einem neuartigen Modell analysiert. Postdoc Dr. Dennis Wiedemann hat dafür ein Modell verwendet, welches zusätzlich zu den drei Raumdimensionen eine vierte Dimension berücksichtigt. Die Strukturdaten wurden bei einer Temperatur von 150 Kelvin an der University of Columbia gemessen.

„Das Problem in diesen hybriden Perowskiten ist die Tatsache, dass sich die verschiedenen Modifikationen energetisch nicht deutlich unterscheiden, so dass bereits kleinere Temperaturdifferenzen ausreichen, um Phasenübergänge anzustoßen“, erläutert Dr. Joachim Breternitz, Ko-Autor der Studie. Die Daten zur Kristallstruktur zeigen daher einen Mittelwert über viele Elementarzellen, sodass Modulationen und Überstrukturen nicht immer erkennbar sind. Das neue Modell erklärt die inkommensurablen Überstrukturen, die bei MAPbBr3 in einem kleinen Temperaturfenster um 150 K beobachtet werden, und die nicht die gleiche Periodizität wie das Kristallgitter besitzen. Diese komplexe Struktur kommt durch Verkippungen und Verschiebungen in der Kristallstruktur zu Stande. „Das neue Modell wird auch genauere Einblicke in die modulierten Strukturen anderer Perowskit-Verbindungen ermöglichen“, sagt Breternitz.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.