MYSTIIC at BESSY II: New X-ray microscope put into operation

<p class="MsoListParagraph">The first image taken by MYSTIIC: a standard image used to calibrate and measure the resolution of the new STXM.

The first image taken by MYSTIIC: a standard image used to calibrate and measure the resolution of the new STXM. © HZB

The pictures below illustrate the capabilities of correlative in situ microscopy, using the example of (Mo,V,Te,Nb)O<sub>x</sub> - a catalyst. This figure shows&nbsp; NEXAFS-TXM at U41 in different gas atmospheres, the data show changes in the electronic states of the elements involved.

The pictures below illustrate the capabilities of correlative in situ microscopy, using the example of (Mo,V,Te,Nb)Ox - a catalyst. This figure shows  NEXAFS-TXM at U41 in different gas atmospheres, the data show changes in the electronic states of the elements involved. © C.Pratsch/HZB ; T. Lunkenbein/FHI

Correlative microscopy images of the same sample site within the transmission electron microscope (TEM).

Correlative microscopy images of the same sample site within the transmission electron microscope (TEM). © K. Dembélé/FHI

The same sample under a full-field transmission X-ray microscope TXM at the U41 beamline at BESSY II, HZB) in a gas atmosphere.

The same sample under a full-field transmission X-ray microscope TXM at the U41 beamline at BESSY II, HZB) in a gas atmosphere. © C. Pratsch/HZB

A new X-ray microscope has started operation at the Energy Materials in situ Lab (EMIL). It is a scanning transmission X-ray microscope designed to examine both sample surfaces and bulk sample. With the soft X-ray light from BESSY II, it is even possible to localise individual elements and chemical compounds; the spatial resolution is below 20 nanometres.

The Energy Materials in situ Lab (EMIL) is directly connected to two beamlines at BESSY II, which provide intense synchrotron radiation for research. One beamline provides hard X-rays, the other soft X-rays for the experiments at EMIL. EMIL is operated jointly by HZB and the Max Planck Society (MPG) . Now, an HZB team has set up a new scanning transmission X-ray microscope (STXM) at the soft X-ray beamline in the BESSY II experimental hall. It was named MYSTIIC - Microscope for x-raY Scanning Transmission In-situ Imaging of Catalysts.

Higher precision and more options

Compared to other X-ray microscopes, the STXM MYSTIIC at EMIL offers even higher precision and more options for scanning surfaces and investigating bulk samples in transmission. In particular, MYSTIIC will also allow to observe chemical processes in gas/liquid cells in the future. "It is like filming the processes taking place during catalysis," says HZB expert Dr Markus Weigand, who is in charge of the instrument. The implementation of a gas mixing system, which is being developed together with the AC department of the Fritz Haber Institute (FHI) of the Max Planck Society, is currently in progress in order to analyse how different gases (for example CO2, CH4, H2 etc.) chemically change the surface of a catalyst on the nanoscale. The new microscope will thus contribute significantly to CatLab's  approach on knowledge and understanding in order to develop novel catalyst.

Testing the instrument with friendly users

"Initially, we want to test the instrument with HZB teams or users we know (friendly users)," explains Weigand. For example, HZB researcher Dr Tristan Petit will be the first to investigate so-called MXenes with MYSTIIC. MXenes can absorb and store large amounts of electrical energy very fast. "We want to scan the surfaces of MXene particles with MYSTIIC and find out which elements are involved in certain chemical processes. This will help us to better understand the amazing properties of this class of materials," Petit explains. He and his team are currently preparing the installation of special sample cells for investigations on catalysis, electrochemistry and electrocatalysis. Sample heating up to 1000 °C is also planned. In the future, routines will be developed in collaboration with the FHI that will make it possible to use the same cells for electron microscopy studies in order to combine energy and spatial resolution on the same sample.

Upgrades in mind

The instrument is designed with upgrades to expand capabilities in mind, which will include advanced operando cells and x-ray cameras systems to enable resolving structures of even a few nanometres using ptychographic methods.

MYSTIIC: Energy materials and environmental sciences

Up to now, there have been two X-ray microscopes at BESSY II with very different purposes. Another STXM (MAXYMUS), operated by MPI-IS, focuses on magnetism and time resolution. Nanoscale NEXAFS* spectromicroscopy of energy materials (see examples below) and tomography – for example of shock frozen cells - in the soft and tender X-ray regime can be examined in Prof. Dr. Gerd Schneider's group. MYSTIIC at EMIL is particularly suitable for resolving questions related to energy materials research and environmental sciences.

External users are invited to apply for beam time at MYSTIIC at EMIL from the first call for 2022.

*NEXAFS: Near Edge X-ray Absorption Fine Structure.

arö

You might also be interested in

  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Recommended reading: Bunsen magazine with focus on molecular water research
    News
    13.01.2023
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.