Perowskit-Solarzellen: Defekte fangen Ladungsträger ein - und geben sie wieder frei
Fünf verschiedene Arten von Defekten in MAPI-Perowskiten wurden untersucht und charakterisiert. Das Ergebnis: ein großer Teil der Defekte hält die Ladungsträger nicht lange fest.
© HZB
Ein Team am HZB und der Charles Universität in Prag hat untersucht, wie in den so genannten MAPI-Perowskit-Halbleitern Ladungsträger mit unterschiedlichen Defekten wechselwirken. Die Studie zeigt, dass ein großer Teil der Defekte eingefangene Ladungsträger schnell wieder freigibt. Die Ergebnisse können dazu beitragen, die Eigenschaften von Perowskit-Solarzellen weiter zu verbessern.
Zu den spannendsten Materialien für Solarzellen gehören die sogenannten MAPI-Halbleiter. Sie bestehen aus organischen Methylammonium-Kationen und Bleijodid-Oktaedern, die eine Perowskitstruktur bilden. MAPI-basierte Solarzellen haben innerhalb weniger Jahre Wirkungsgrade von 25 Prozent erreicht. Bislang altern die halborganischen Halbleiter jedoch noch schnell.
Nun hat ein internationales Team am HZB, CNRS, Frankreich und der Charles Universität Prag, Tschechien, erstmals fünf verschiedene Defekttypen in MAPI-Perowskiten genau charakterisiert und die Wechselwirkung zwischen diesen Defekten und den Ladungsträgern gemessen. Mit einer Kombination aus hochempfindlichen Spektroskopiemethoden gelang es ihnen, Konzentration, Energie, Einfangquerschnitt und Ladungseinfangzeit der verschiedenen Defekte experimentell zu bestimmen und eine Karte der Defekte zu erstellen. Durch die Verwendung von elektrischen Pulsen stellten sie sicher, dass die Messungen die Qualität des Materials nicht beeinträchtigten.
Die Messergebnisse ermöglichen die zuverlässige Unterscheidung zwischen Elektronen- und Löchertransport und die Bestimmung ihrer wichtigsten Parameter: Mobilitäten, Lebensdauern und Diffusionslängen. „Damit gibt diese Arbeit Antworten auf Fragen, die schon lange Zeit im Bereich der Perowskit-Solarzellen diskutiert wurden“, sagt Dr. Artem Musiienko, Erstautor der Publikation und Postdoc am HZB.
Eine wichtige Erkenntnis: Ein großer Teil der Defekte gibt die eingefangenen Ladungsträger nach kurzer Zeit wieder frei. „Das könnte eine Erklärung für die besonders hohen Wirkungsgrade der MAPI-Perowskite sein", sagt Musiienko. Diese Ergebnisse ebnen den Weg, MAPI-Perowskite hinsichtlich der Defektkonzentration zu optimieren, um hohe Wirkungsgrade mit guter Stabilität zu kombinieren.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23195;sprache=de 
- Link kopieren
-
Prashanth Menezes erhält VAIBHAV-Stipendium der indischen Regierung
Das indische Ministerium für Wissenschaft und Technologie hat die Empfängerinnen und Empfänger des Vaishvik Bhartiya Vaigyanik (VAIBHAV)-Stipendiums bekannt gegeben, einer Flaggschiff-Initiative zur Förderung der Zusammenarbeit zwischen der indischen Forschungs-Diaspora in den MINT-Fächern und führenden Forschungseinrichtungen in Indien. Zu den Preisträgern 2025 zählt Dr. Prashanth W. Menezes, der am HZB die Abteilung für Materialchemie für Katalyse leitet.
-
Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.
-
Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.