Innovative Katalysatoren: Ein Überblicksbeitrag

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden.

Die Illustration veranschaulicht die Aufspaltung von Wasser in Sauerstoff und Wasserstoff mit Hilfe von innovativen Elektrokatalysatoren. Wasserstoff kann als Brennstoff und chemischer Energiespeicher genutzt werden. © Dr. Ziliang Chen

Grüner Wasserstoff benötigt hocheffiziente (Elektro-)Katalysatoren. Auch für die chemische Industrie, die Düngemittelproduktion und andere Wirtschaftszweige sind Katalysatoren unerlässlich. Neben den Übergangsmetallen sind inzwischen eine Vielzahl anderer metallischer oder nichtmetallischer Elemente in den Fokus der Forschung gerückt. In einem Übersichtsartikel geben Experten des CatLab am HZB und der Technischen Universität Berlin einen Überblick über den aktuellen Wissensstand und einen Ausblick auf zukünftige Forschungsfragen.

Grüner Wasserstoff ist ein wichtiger Baustein in einem klimaneutralen Energiesystem. Er wird durch elektrolytische Spaltung von Wasser mit Wind- oder Sonnenenergie erzeugt und speichert diese Energie in chemischer Form. Doch derzeit ist die Herstellung von grünem Wasserstoff noch nicht wirtschaftlich und effizient genug. Der Schlüssel zur Lösung dieses Problems liegt in der Entwicklung innovativer Elektrokatalysatoren, die nicht nur mit hohem Wirkungsgrad arbeiten, sondern auch langlebig, verfügbar und kostengünstig sein sollten.

Neben den Übergangsmetallen, deren katalytische Eigenschaften bereits gut erforscht sind, sind nun auch Elemente aus den Gruppen der Alkalimetalle, Erdalkalimetalle, Seltenerdmetalle oder Metalloide in den Fokus der Aufmerksamkeit gerückt. Einige Elemente aus diesen Gruppen könnten in Kombination mit Übergangsmetallen die Leistung von Katalysatoren erheblich verbessern und zur Entwicklung von Hochleistungs-Elektrokatalysatoren der nächsten Generation beitragen. Viele der Prozesse, die während der Elektrokatalyse bei der Bildung von Sauerstoff oder Wasserstoff ablaufen, sind jedoch noch nicht im Detail verstanden.

In einem Übersichtsartikel führt nun ein internationales Expertenteam durch dieses spannende Forschungsgebiet und skizziert die nächsten Schritte, die die Katalysatorforschung nehmen könnte. "Dieser Beitrag fasst den aktuellen Wissensstand über unkonventionelle Materialien  zusammen und macht ihn für eine breitere Wissenschaftsgemeinschaft zugänglich. Darüber hinaus beschreibt er ausführlich die Rolle dieser Metalle bei der Elektrokatalyse, sowie die Modifizierungsstrategie, die man in Betracht ziehen könnte, wenn man Elektrokatalysatoren einsetzen will, die nicht auf Edelmetallen basieren. Wir hoffen, mit diesem Übersichtsartikel die Forschung und Entwicklung an innovativen Katalysatormaterialien erheblich zu beschleunigen", betont Dr. Prashanth W. Menezes.

 

Hinweis: Dr. Prashanth W. Menezes ist Leiter der Gruppe Materialchemie für Dünnschichtkatalyse am HZB im CatLab-Projekt und Leiter der Gruppe Anorganische Materialien an der TU Berlin.

Seine Twitterhandle lautet @EnergycatLab

Zu CatLab: Gemeinsam mit dem Fritz-Haber-Institut der Max-Planck-Gesellschaft baut das HZB das Katalyse-Labor CatLab auf, das die Forschung an innovativen Katalysatoren beschleunigen soll.  CatLab wird vom Bundesministerium für Bildung und Forschung gefördert.

arö

Das könnte Sie auch interessieren

  • Tiburtius-Preis für Eike Köhnen
    Nachricht
    07.12.2022
    Tiburtius-Preis für Eike Köhnen
    Am Dienstag, den 6.12.2022 erhielt Dr. Eike Köhnen den Tiburtius-Preis (Erster Platz) für seine herausragende Dissertation. Eike Köhnen hat dazu beigetragen, den Wirkungsgrad von Tandemsolarzellen aus Perowskit und Silizium deutlich zu steigern, bis hin zu Weltrekord-Werten.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.