Researchers discover why tendons are strong as wire ropes

Under the electron microscope: collagen fiber bundle after mineralization with (the bone mineral) calcium phosphate.

Under the electron microscope: collagen fiber bundle after mineralization with (the bone mineral) calcium phosphate. © Max-Planck-Institut für Kolloid- und Grenzflächenforschung

A team at the Max Planck Institute of Colloids and Interfaces (MPICI) has discovered with help of BESSY II new properties of collagen: During the intercalation of minerals in collagen fibers, a contraction tension is generated that is hundreds of times stronger than muscle strength. The associated changes in the collagen structure were observed using X-ray diffraction at the BESSY II synchrotron in Berlin-Adlershof while mineralization was taking place.

"This universal mechanism of mineralization of organic fiber tissues could be transferred to technical hybrid materials, for example, to achieve high breaking strength there," says Prof. Dr. Dr.h.c. Peter Fratzl, Director at the institute.

The fiber-forming structural protein collagen is found in tendons, skin and bones, among other places. It is also interesting from a medical or biological point of view to understand what happens in the process of mineralization in bones. Many bone diseases are associated with changes in mineral content in bones and thus altered properties.

Read the full press release on the MPIKG website.

(red/sz)


You might also be interested in

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells. 
  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF.