Spintronics: Giant Rashba semiconductors show unconventional dynamics with potential applications

Left: Electronic structure of GeTe taken with 11 eV photons at BESSY-II, showing the band dispersions of bulk (BS) and surface Rashba states (SS1, SS2) in equilibrium. Middle: Zoom-in on the region of the Rashba states measured with fs-laser 6 eV photons. Right: Corresponding out-of-equilibrium dispersions following excitation by the pump pulse.

Left: Electronic structure of GeTe taken with 11 eV photons at BESSY-II, showing the band dispersions of bulk (BS) and surface Rashba states (SS1, SS2) in equilibrium. Middle: Zoom-in on the region of the Rashba states measured with fs-laser 6 eV photons. Right: Corresponding out-of-equilibrium dispersions following excitation by the pump pulse.

Germanium telluride is a strong candidate for use in functional spintronic devices due to its giant Rashba-effect. Now, scientists at HZB have discovered another intriguing phenomenon in GeTe by studying the electronic response to thermal excitation of the samples. To their surprise, the subsequent relaxation proceeded fundamentally different to that of conventional semimetals. By delicately controlling the fine details of the underlying electronic structure, new functionalities of this class of materials could be conceived. 

 

In recent decades, the complexity and functionality of silicon-based technologies has increased exponentially, commensurate with the ever-growing demand for smaller, more capable devices. However, the silicon age is coming to an end.  With increasing miniaturisation, undesirable quantum effects and thermal losses are becoming an ever-greater obstacle. Further progress requires new materials that harness quantum effects rather than avoid them. Spintronic devices, which use spins of electrons rather than their charge, promise more energy efficient devices with significantly enhanced switching times and with entirely new functionalities.

Spintronic devices are coming

Candidates for spintronic devices are semiconductor materials wherein the spins are coupled with the orbital motion of the electrons. This so-called Rashba effect occurs in a number of non-magnetic semiconductors and semi-metallic compounds and allows, among other things, to manipulate the spins in the material by an electric field.

First study in a non equilibrium state

Germanium telluride hosts one of the largest Rashba effects of all semiconducting systems. Until now, however, germanium telluride has only been studied in thermal equilibrium. Now, for the first time, a team led by HZB physicist Jaime-Sanchez-Barriga has specifically accessed a non-equilibrium state in GeTe samples at BESSY II and investigated in detail how equilibrium is restored in the material on ultrafast (<10-12 seconds) timescales. In the process, the physicists encountered a new and unexpected phenomenon.

First, the sample was excited with an infrared pulse and then measured with high time resolution using angle-resolved photoemission spectroscopy (tr-ARPES). "For the first time, we were able to observe and characterise all phases of excitation, thermalisation and relaxation on ultrashort time scales," says Sánchez-Barriga. The most important result: "The data show that the thermal equilibrium between the system of electrons and the crystal lattice is restored in a highly unconventional and counterintuitive way", explains one of the lead authors, Oliver Clark.

Equilibrium restored: the cooler, the faster

In simple metallic systems, thermal equilibrium is established primarily through the interaction between electrons with each other and between electrons and the lattice vibrations in the crystal (phonons). This process slows down steadily with lower temperatures. In germanium telluride, however, the researchers observed an opposite behaviour: The lower the lattice temperature of the sample, the faster the thermal equilibrium is established after excitation with the heat pulse.  "That was very surprising," says Sánchez-Barriga. With theoretical calculations within the framework of the Boltzmann approach carried out by collaborators at Nanyang Technological University, they were able to interpret the underlying microscopic processes and distinguish three different thermalisation processes: Interactions between electrons within the same band, in different bands and electrons with phonons.

Future applications

It seems, that the interaction between electrons dominates the dynamics and becomes much faster with decreasing lattice temperature. “This can be explained by the influence of the Rashba splitting on the strength of the fundamental electronic interactions. This behaviour is applicable to all Rashba semiconductors," says Sánchez-Barriga: "The present results are important for future applications of Rashba semiconductors and their excitations in ultrafast spintronics."

arö

  • Copy link

You might also be interested in

  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.