Third-highest oxidation state secures rhodium a place on the podium

For the first time, a team has detected rhodium in the +7 oxidation state, the third highest oxidation state experimentally among all elements in the periodic table.

For the first time, a team has detected rhodium in the +7 oxidation state, the third highest oxidation state experimentally among all elements in the periodic table. © https://doi.org/10.1002/anie.202207688

Oxidation states of transition metals describe how many electrons of an element are already engaged in bonding, and how many are still available for further reactions. Scientists from Berlin and Freiburg have now discovered the highest oxidation state of rhodium, indicating that rhodium can involve more of its valence electrons in chemical bonding than previously thought. This finding might be relevant for the understanding of catalytic reactions involving highly-oxidized rhodium. The result was recognized as a „very important paper“ in Angewandte Chemie.

Transition metals in high or unusual oxidation states might play an important role as catalysts or reaction intermediates in chemical reactions. Because transition metals are already well characterized in most cases, the discovery of a new oxidation state of rhodium came as a real surprise. The identification of rhodium(VII) was made possible by PhD student Mayara da Silva Santos and co-workers, who were able to isolate the species from any reactant in a low-temperature ion trap, and perform x-ray absorption spectroscopy for its characterization. 

BESSY II was essential for the discovery

These kinds of experiments are highly demanding, and can, at present, only be carried out at BESSY II. „The combination of advanced sample preparation, low-temperature ion trapping, and x-ray spectroscopy is unique. Because these essential tools can even be applied to more complex systems, we anticipate further insight into exotic transition metal oxides“, says Vicente Zamudio-Bayer, head of the ion trap group at beamline UE52-PGM, who develops and operates the ion trap endstation at BESSY II. „What was important for us was that our surprising experimental findings could be substantiated by Sebastian Riedel‘s group at FU Berlin, who performed state-of-the-art calculations on the species in question“, explains Zamudio-Bayer. “Even rhodium in oxidation state +6 is very rare, so we had to be extremely careful about +7. New oxidation states are not discovered every day”, says Mayara da Silva Santos.

Catalytic relevance of a potential reaction intermediate

“This is the third-highest oxidation state of all elements. The fact that rhodium(VII) exists, but was unknown, could imply that it might have been overlooked when analyzing pathways of chemical reactions”, Zamudio-Bayer points out.

Possible stabilization for further use

The discovery of rhodium(VII) was made for gas-phase species, but a stabilization of the trioxidorhodium cation by weakly coordinating anions seems possible, based on comparison with other known compounds . This could open prospects for further characterization or applications. “Our rhodium(VII) species is highly reactive, but understanding these seemingly exotic species could lead to improved materials in the future,” Mayara da Silva Santos adds.

Tobias Lau

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.