Rhomboedrischer Graphit als Modell für Quantenmagnetismus

Rhomboedrischer Graphit besteht aus leicht gegeneinander verschobenen Graphen-Schichten. 

Rhomboedrischer Graphit besteht aus leicht gegeneinander verschobenen Graphen-Schichten.  © 10.1126/sciadv.abo6879

<p class="Default">Auf der Oberfl&auml;che von rhomboedrischem Graphit k&ouml;nnen sich Elektronen in 2D frei bewegen. Visualisiert wird dies hier durch die roten Kugeln um die Kohlenstoff-Atome der obersten Graphen-Lage.

Auf der Oberfläche von rhomboedrischem Graphit können sich Elektronen in 2D frei bewegen. Visualisiert wird dies hier durch die roten Kugeln um die Kohlenstoff-Atome der obersten Graphen-Lage.

Graphen ist ein äußerst spannendes Material. Nun zeigt eine Graphen-Variante ein weiteres Talent: Rhomboedrischer Graphit aus mehreren, leicht gegeneinander versetzten Schichten könnte die verborgene Physik in Quantenmagneten aufklären.

Graphen-Materialien bestehen nur aus Kohlenstoffatomen, die Grundform ist eine einlagige Bienenwabenstruktur. Aber es gibt einige Varianten mit erstaunlich vielseitigen Eigenschaften. So können beispielsweise Stapel von Graphenschichten* eine Vielzahl von Quasiteilchen und Vielteilchenphänomenen beherbergen: Von Dirac-Fermionen in Einzelschichten bis hin zu exotischer Supraleitfähigkeit in verdrillten Doppelschichten.

Freie Ladungsträger an der Oberfläche

In rhomboedrischem Graphit (RG) sind die wabenförmigen Schichten mit einem bestimmten Versatz übereinander gestapelt. Dies führt zu einer besonderen elektronischen Struktur mit sehr flachen Bändern an der Oberfläche. Wie in einem topologischen Isolator bewegen sich die Ladungsträger nur an der Oberfläche frei.

Letztes Jahr wurde gezeigt, dass Dreischichten aus RG auch Ferromagnetismus und unkonventionelle Supraleitung aufweisen. Und: Die Stärke der Wechselwirkungen nimmt mit der Anzahl der Schichten zu.

Experimentelle und theoretische Analysen

Ein Team vom Zentrum für Energieforschung, Budapest, Ungarn und am HZB hat nun erstmals die Oberfläche von mehrschichtigen RG-Proben unter einem Rastertunnelmikroskop untersucht. Sie konnten die Bandstruktur und die elektronischen Eigenschaften präzise abbilden und entdeckten unerwartet reiche Vielteilchen-Grundzustände. Zudem arbeiteten sie mit verschiedenen Modellen der Quantenphysik, um verborgene Prozesse und Wechselwirkungen in den Proben zu verstehen. 

Bezug zu Quantenmagnetismus

"Das Interessante an rhomboedrischem Graphit ist, dass dieses Material auch sogenannte Spin-Kanten-Zustände aufweist, die in Quantenmagneten vorkommen. Die Arbeit verbindet somit zwei wichtige Bereiche der kondensierten Materie: Graphen-basierte Systeme und Quantenmagnete", sagt Dr. Imre Hagymási, Erstautor der Arbeit, die jetzt in Science Advances erschienen ist.

Ein flexibles Modellsystem

Die Studie bietet neue Einblicke in das Zusammenspiel von Topologie und Vielteilchenphysik und damit die Chance, die Physik in Quantenmagneten zu erhellen. Derzeit sind selbst einfache Quantenmagnete noch nicht vollständig verstanden. Quantenmagnete spielen aber auch bei hochaktuellen Themen wie den Hochtemperatur-Kuprat-Supraleitern eine Rolle. RG bietet eine alternative Plattform für die Untersuchung solcher korrelierter Phänomene. Eine Plattform, die durch elektrische Felder, Dehnung usw. einstellbar ist und im Vergleich zu anderen korrelierten Materialien eine sehr einfache Kristallstruktur aufweist. "Diese Ergebnisse sind wirklich hilfreich für das gesamte Forschungsgebiet", sagt Hagymási.

*Anmerkung:  Graphen besteht eigentlich nur aus einer einzigen Lage von vernetzten Kohlenstoff-Atomen , mehrere Lagen solcher Graphen-Schichten werden als Graphit bezeichnet.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.