BESSY II: Lokalisierung von d-Elektronen vermessen

An BESSY II lässt sich mit Auger-Photo-Electronen-Coinzidenz Spektroskopie (APECS) die Lokalisierung von d-Elektronen in Kobalt im Vergleich zu Nickel und Kupfer präzise ermitteln.

An BESSY II lässt sich mit Auger-Photo-Electronen-Coinzidenz Spektroskopie (APECS) die Lokalisierung von d-Elektronen in Kobalt im Vergleich zu Nickel und Kupfer präzise ermitteln. © adobestock

Übergangsmetalle besitzen vielfältige Anwendungen als Werkstoffe und in der Elektrochemie und Katalyse. Um ihre Eigenschaften zu verstehen, ist das Wechselspiel zwischen atomarer Lokalisierung und Delokalisierung der äußeren Elektronen in den d-Orbitalen entscheidend. Diesen Einblick ermöglicht nun eine besondere Messmethode an BESSY II mit höchster Präzision. Eine Studie an Kupfer, Nickel und Kobalt kommt dabei zu quantitativen Erkenntnissen. Die Royal Society of Chemistry hat den Beitrag als HOT Article 2022 ausgewählt.

Übergangsmetalle und Buntmetalle wie Kupfer, Nickel oder Kobalt eignen sich nicht nur als Werkstoffe, sondern auch für vielfältigste Anwendungen in der Elektro-Chemie und -Katalyse. Ihre besonderen chemischen und physikalischen Eigenschaften hängen mit der Besetzung der äußeren d-Orbitalschalen rund um die Atomkerne zusammen. Die energetischen Niveaus der Elektronen sowie ihre Lokalisierung oder auch Delokalisierung lassen sich hervorragend an der Röntgenquelle BESSY II untersuchen.

Kupfer, Nickel, Kobalt

Das Team des Uppsala-Berlin Joint Lab (UBjL) um Prof. Alexander Föhlisch und Prof. Nils Mårtensson hat nun neue Messungen an Kupfer- Nickel- und Kobaltproben veröffentlicht. Dabei bestätigten sie bekannte Befunde zu Kupfer, dessen d-Elektronen atomar lokalisiert sind, sowie für Nickel, in welchem lokalisierte mit delokalisierten Elektronen koexistieren. Beim Element Kobalt, welches für Batterien und als Legierung in Brennstoffzellen eingesetzt wird, waren bisherige Befunde jedoch widersprüchlich, da die Messgenauigkeit nicht ausreichte, um klare Aussagen zu treffen.

Hochempfindliche Spektrometer

An der Röntgenquelle BESSY II, die leistungsstarke Synchrotronstrahlung bietet, hat das Uppsala-Berlin joint Lab ein Instrument mit der erforderlichen Präzision aufgebaut. Mit der Auger-Photo-Elektronen-Coinzidenz-Spectroskopie (APECS) lassen sich hier die elektronische Lokalisierung bzw. Delokalisierung messen. Das deutsch-schwedische Team entwickelte dafür die „Angle resolved Time of Flight“ (ArTOF) Elektronenspektrometer, deren Nachweiseffizienz die von standardisierten hemisphärischen Analysatoren um Größenordnungen übertrifft. Ausgerüstet mit zwei ArTOF Elektronenspektrometern ist die von UBjL Wissenschaftler Dr. Danilo Kühn betreute Experimentstation CoESCA@UE52-PGM weltweit einzigartig.

Methode steht auch Messgästen zur Verfügung

Beim Element Kobalt zeigten nun die Messungen, dass die d-Elektronen des Kobalts als hochgradig delokalisiert anzusehen sind. „Dies ist ein wichtiger Schritt für eine quantitative Bestimmung elektronischer Lokalisation an einer Vielzahl von Werkstoffen, Katalysatoren und (elektro)chemischen Prozessen“, sagt Föhlisch.

Die Royal Society of Chemistry hat den Beitrag daher als HOT Article 2022 ausgewählt, auch mit der Intention, dass diese Messmethode breites Interesse in der Forschung weckt. Die Endstation steht auch internationalen Messgästen an BESSY II zur Verfügung, die sich zweimal jährlich um Messzeit bewerben können.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • "BESSY ist für Berlin von immenser Bedeutung"
    Nachricht
    02.09.2024
    "BESSY ist für Berlin von immenser Bedeutung"
    Ende August hat die Senatorin für Wissenschaft, Gesundheit und Pflege, Dr. Ina Czyborra gemeinsam mit dem Staatssekretär für Wissenschaft, Dr. Henry Marx, ihre Sommertour mit einem Besuch am HZB in Adlershof beendet. Dabei bekannte sie sich öffentlich dazu, den Neubau von BESSY III politisch zu unterstützen.

  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.