BESSY II: Localisation of d-electrons determined

At BESSY II, Auger photoelectron coincidence spectroscopy (APECS) can be used to precisely determine the localisation of d electrons in cobalt compared to nickel and copper.

At BESSY II, Auger photoelectron coincidence spectroscopy (APECS) can be used to precisely determine the localisation of d electrons in cobalt compared to nickel and copper. © adobestock

Transition metals have many applications in engineering, electrochemistry and catalysis. To understand their properties, the interplay between atomic localisation and delocalisation of the outer electrons in the d orbitals is crucial. This insight is now provided by a special end station at BESSY II with highest precision, as demonstrated by a study of copper, nickel and cobalt with interesting quantitative results. The Royal Society of Chemistry has selected the paper as a HOT Article 2022.

Transition metals and non-ferrous metals such as copper, nickel and cobalt are not only suitable as materials in engineering and technology, but also for a wide range of applications in electrochemistry and catalysis. Their chemical and physical properties are related to the occupation of the outer d-orbital shells around the atomic nuclei. The energetic levels of the electrons as well as their localisation or delocalisation can be studied at the X-ray source BESSY II, which offers powerful synchrotron radiation.

Copper, Nickel, Cobalt

The team of the Uppsala-Berlin Joint Lab (UBjL) around Prof. Alexander Föhlisch and Prof. Nils Mårtensson has now published new results on copper, nickel and cobalt samples. They confirmed known findings for copper, whose d-electrons are atomically localised, and for nickel, in which localised electrons coexist with delocalised electrons. In the case of the element cobalt, which is used for batteries and as an alloy in fuel cells, however, previous findings were contradictory because the measurement accuracy was not sufficient to make clear statements.

Spectroscopy combined with highly sensitive detectors

At BESSY II the Uppsala-Berlin joint Lab has set up an instrument which enables measurements with the necessary precision. To determine electronic localisation or delocalisation, Auger photo-electron coincidence spectroscopy (APECS) is used. APECS requires the newly developed "Angle resolved Time of Flight" (ArTOF) electron spectrometers, whose detection efficiency exceeds that of standard hemispherical analysers by orders of magnitude. Equipped with two ArTOF electron spectrometers, the CoESCA@UE52-PGM end station supervised by UBjL scientist Dr. Danilo Kühn is unique worldwide.

Analysing (catalytical) materials

In the case of the element cobalt, the measurements now revealed that the d-electrons of cobalt can be regarded as highly delocalised. "This is an important step for a quantitative determination of electronic localisation on a variety of materials, catalysts and (electro)chemical processes," Föhlisch points out.

Guest users are welcome

The Royal Society of Chemistry has therefore selected the paper as a HOT Article 2022, also because this measurement method might arouse broad interest in the broader research community. The end station is also available to international users at BESSY II, who can apply for beamtime twice a year.

arö


You might also be interested in

  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Fractons as information storage: Not yet quite tangible, but close
    Science Highlight
    26.05.2023
    Fractons as information storage: Not yet quite tangible, but close
    A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.
  • Graphene on titanium carbide triggers a novel phase transition
    Science Highlight
    25.05.2023
    Graphene on titanium carbide triggers a novel phase transition
    Researchers have discovered a Lifshitz-transition in TiC, driven by a graphene overlayer, at the photon source BESSY II. Their study sheds light on the exciting potential of 2D materials such as graphene and the effects they can have on neighboring materials through proximity interactions.