BESSY II: Einfluss von Protonen auf Wassermoleküle

An BESSY II konnten die spektralen Fingerabdr&uuml;cke von Wassermolek&uuml;le untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermolek&uuml;le in einem H<sub>7</sub>O<sub>3</sub><sup>+</sup>-Komplex wird durch das Proton drastisch ver&auml;ndert. Dar&uuml;ber hinaus ver&auml;ndert sich auch die erste Hydrath&uuml;lle aus f&uuml;nf weiteren Wassermolek&uuml;len, die das Proton &uuml;ber sein langreichweitiges elektrisches Feld wahrnimmt.

An BESSY II konnten die spektralen Fingerabdrücke von Wassermoleküle untersucht werden. Das Ergebnis: die elektronische Struktur der drei innersten Wassermoleküle in einem H7O3+-Komplex wird durch das Proton drastisch verändert. Darüber hinaus verändert sich auch die erste Hydrathülle aus fünf weiteren Wassermolekülen, die das Proton über sein langreichweitiges elektrisches Feld wahrnimmt. © MBI

Wie Wasserstoff-Ionen oder Protonen mit ihrer wässrigen Umgebung wechselwirken, hat große Praxisrelevanz, ob in der Technologie von Brennstoffzellen oder in den Lebenswissenschaften. Nun hat ein großes internationales Konsortium an der Röntgenquelle BESSY II diese Frage experimentell im Detail untersucht und neue Effekte entdeckt. So verändert die Anwesenheit eines Protons die elektronische Struktur der drei innersten Wassermoleküle, wirkt sich aber außerdem auch noch darüber hinaus über ein langreichweitiges Feld auf eine Hydrathülle aus fünf weiteren Wassermolekülen aus.

Überschüssige Protonen in Wasser sind komplexe Quantenobjekte mit starken Wechselwirkungen mit dem dynamischen Wasserstoffbrückenbindungsnetz der Flüssigkeit. Diese Wechselwirkungen sind überraschend schwer zu untersuchen. Dabei spielt die so genannte Protonenhydratisierung eine zentrale Rolle beim Energietransport in Wasserstoffbrennstoffzellen und bei der Signalübertragung in Transmembranproteinen. Während die Geometrien und Stöchiometrien sowohl in Experimenten als auch in der Theorie umfassend untersucht wurden, ist die elektronische Struktur dieser hydratisierten Protonenkomplexe nach wie vor ein Rätsel.

Elektronische Struktur von Protonen in Lösung

Eine große Kooperation aus Gruppen des Max-Born-Instituts, der Universität Hamburg, der Universität Stockholm, der Ben-Gurion-Universität und der Universität Uppsala hat nun neue Erkenntnisse über die elektronische Struktur hydratisierter Protonenkomplexe in Lösung gewonnen.

Wechselwirkungen mit kurzer und längerer Reichweite

Mit Hilfe der neuartigen Flatjet-Technologie führten sie an BESSY II röntgenspektroskopische Messungen durch und kombinierten sie mit Infrarotspektralanalyse und Berechnungen. Dadurch ließen sich zwei wesentliche Effekte unterscheiden: Lokale Orbital-Wechselwirkungen bestimmen die kovalente Bindung zwischen dem Proton und benachbarten Wassermolekülen, während Orbital-Energie-Verschiebungen die Stärke des ausgedehnten elektrischen Feldes des Protons messen. Die Ergebnisse legen eine allgemeine Hierarchie für die Protonenhydratation nahe: Das Proton interagiert mit drei Wassermolekülen und bildet einen H7O3+-Komplex. Die Hydratschale dieses Komplexes wird durch das elektrische Feld der positiven Ladung des Protons beeinflusst.

Mögliche Anwendungen

Die neuen Forschungserkenntnisse haben direkte Auswirkungen auf das Verständnis der Protonenhydratation von Protonen in wässriger Lösung über Protonenkomplexe in Brennstoffzellen bis hin zur Wasserstruktur-Hydratationstaschen von Protonenkanälen in Transmembranproteinen.

Eine längere Meldung dazu können Sie auf der Seite des Max-Born-Instituts lesen>

 

MBI/arö

Das könnte Sie auch interessieren

  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Science Highlight
    28.11.2022
    Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.